

Search for the Higgs boson in fermionic channels using ATLAS detector

2014 Dec 1st Discovery Physics at the LHC

Kruger 2014, South Africa

Kazuya Mochizuki, on behalf of the ATLAS collaboration

Centre de Physique des Particules de Marseille (CPPM)

Since the discovery...

Higgs searches with fermions at ATLAS

Recently updated. Main topics in this talk.

	Channel	Reference and	d released date	Paper submitted to
New	$H \rightarrow \tau \tau$	ATLAS-CONF-2 2014 Oct 7	<u>2014-061</u>	-
	$H ightarrow \mu \mu$	<u>Physics Letter</u> 2014 Jun 30	<u>s B doi:10.1016</u>	PLB
New	$\checkmark VH \rightarrow Vbb$	<u>arXiv: 1409.62</u> 2014 Sep 22	212	JHEP
ſ	$ttH \rightarrow ttbb$	ATLAS-CONF-2 2014 Mar 24	<u>2014-011</u>	-
	$ttH \rightarrow tt\gamma\gamma$	<u>arXiv:1408.70</u> 2014 Aug 27	<u>84</u>	PRD
L	$tH \rightarrow tbb$	<u>arXiv:1409.31</u> 2014 Sep 10	<u>22</u>	PLB
Oti	her related talks on SM H	iggs	Wed. 3 rd	Speaker
For	r Higgs combinations and _l	properties	9:15	Kyle CRANMER
Foi	r prospect studies		10:45	Philip CLARK
For	r ttH channels		14:30	Giuseppe SALAMANNA

Higgs production modes

Talk Outline

- 1. Searches with leptons 1. $H \rightarrow \tau \tau$
 - 2. $H \rightarrow \mu\mu$
- 2. Searches with quarks 1. VH, $H \rightarrow bb$

Br($H \to \tau \tau$) = 6.3% Br($H \to \mu \mu$) = 0.02% Br($H \to bb$) = 58% m_H = 125 GeV

VBF $H \rightarrow \tau_e \tau_{had}$ candidate in Run 1

H ightarrow au au analysis channels

• The search is split into 3 sub-channels based on au decay modes.

$H \rightarrow \tau \tau$ analysis strategy

$Z \rightarrow \tau \tau$ background estimation

Arbitrary Units 0.3 0.25

0.2

0.15

 $Z \rightarrow \mu\mu$, data vs data(emb)

---- Data

- Embedded Data

ATLAS Preliminary

Tau-embedding technique Estimate shape of $Z \rightarrow \tau \tau$ from $Z \rightarrow \mu \mu$ data

- Remove μ tracks and calorimeter cells
- Replace μ with τ from full-simulated

$H \rightarrow \tau \tau$ BDT analysis

- 6 BDT trainings for 2(Boosted, VBF) * 3($\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$)
- Simultaneous fit on the 6 BDT output + control regions

$H \rightarrow \tau \tau$ results

ATLAS Prelim.

 $\mu = 1.4^{+0.4}_{-0.4}$

m_H = 125.36 GeV

 $\mathbf{H} \rightarrow \tau \tau$

σ(statistical)

-σ**(theory)**

-σ(syst. excl. theory)

Signal strength:

MVA: $\mu = 1.42^{+0.27}_{-0.26}$ (stat.) $^{+0.32}_{-0.24}$ (syst.) ± 0.10 (theo.) for m_H = 125.36 GeV

Cut based cross-check (8TeV only):

 $\mu = 1.37^{+0.57}_{-0.48}$ (tot.)

Compatible with SM

Total uncertainty

 $\pm 1\sigma$ on μ

4

Talk Outline

$H ightarrow \mu \mu$ analysis

Overview

- Important to measure
 - the 2nd generation couplings
- Search for a narrow resonance of $H \rightarrow \mu\mu$
- Fit $m_{\mu\mu}$ in 110-160 GeV range
- Overwhelming irreducible Drell-Yan background^{10°}_{10²}
 Precise background modeling is an important key 10
- categorization
 - ggH, VBF with 2 jets
 - For ggH, further categorization based on η^{μ} :
 - Central category: $|\eta^{\mu_1}| < 1$ and $|\eta^{\mu_2}| < 1$

- Low ($p_{\mathrm{T}}^{\mu\mu}$ <15 GeV)
- Medium (15< $p_{\rm T}^{\mu\mu}$ <50 GeV)
- High (50< $p_{\mathrm{T}}^{\mu\mu}$ GeV)

Pre-selection

- 2 isolated opposite sign muons
- $p_{\rm T}^{\mu_1}$ > 25 GeV, $p_{\rm T}^{\mu_2}$ > 15 GeV
- $E_{\rm T}^{\rm miss}$ < 80 GeV

$H \rightarrow \mu \mu$ results

Talk Outline

- 1. Searches with leptons
 - 1. $H \rightarrow \tau \tau$
 - *2.* $H \rightarrow \mu\mu$
- 2. Searches with quarks
 - 1. VH, $H \rightarrow bb$ $ZH \rightarrow \nu\nu bb$ $WH \rightarrow \ell\nu bb$ $ZH \rightarrow \ell\ell bb$

$WH \rightarrow \mu \nu bb$ candidate in Run 1

$VH \rightarrow Vbb$ analysis I

- Large BR (~58%), but pp → bb overwhelms ggH and VBF production to search
 ⇒ Use associated W/Z production for probe and distinguish signal from backgrounds
- 2 analyses to confirm each other
 - Multi-variate analysis (MVA): fit BDT output which combines kinematic variables in addition to m_{bb}
 - Cut-based analysis: fit di-jet invariant mass (m_{bb}) . Cross-check for MVA.
- Analysis splits into 3 sub-channels based on decay modes of W/Z: 0-, 1-, 2-lepton

Process	Z ightarrow u u	$W ightarrow e u$ / $W ightarrow \mu u$	$Z ightarrow ee$ / $Z ightarrow \mu \mu$	
#leptons	0	1	2	
Branching fraction	20%	11% / 11%	3.3% / 3.3%	
Main background	Top, W/Z+jets	Top, W+jets	Z+jets	
Event signature (Selection/BDT-input)	 Large E_T^{miss} and p_T^{miss} E_T^{miss} and di-jet in back-to-back 	 <i>E</i>_T^{miss} and <i>H</i>_T to kill multi-jet <i>m</i>_T^W 	• Low $E_{\mathrm{T}}^{\mathrm{miss}}$ • $m_{\ell\ell}$ window cut for m_Z	

 $H_{\rm T}$: Scalar sum of jets, lepton, and $E_{\rm T}^{miss}$

$VH \rightarrow Vbb$ analysis II

- To maximize sensitivity and cope with different background composition, analysis further splits into
 - 2-jet and 3-jet categories
 - Low and high p_{T}^{V} categories (p_{T}^{V} boundary @ 120 GeV)
- Select exactly 2 tagged b-jets
 - MV1c tagger is used: improved c-jet rejection
 - Thanks to continuous calibration of b-tagging, three 2-tag categories are used based on tightness of MV1c tagger.
- In addition to three 2-tag regions, simultaneously fit MC1c in 1-tag region to constraint background

50%

70%

80%

80% 70%

MV1c(j2)

tag

50%

MM

ТТ

1-tag

MV1c(j₁)

VH improvements

Use BDTs in 3(0-, 1-, 2-) lepton-channels x 2(2-,3-) jet bins x 2(low, high) p_T^V bins x 3(LL, MM, TT) 2-tag regions

$VH \rightarrow Vbb$ results

Summary

Decay channels	Signal strength (μ)	Significance / limit
H ightarrow au au	1. $4^{\pm 0.3(stat)}_{\pm 0.3(sys)}$	4 . 5 (3. 5) <i>σ</i>
$H ightarrow \mu \mu$	—	$\mu/\mu_{ m SM}$ = 7.0 (7.2)
$VH \rightarrow Vbb$	0. $5^{\pm 0.3(stat)}_{\pm 0.2(sys)}$	1. 4 (2. 6) σ

- $H \rightarrow \tau \tau$: Evidence for Y_{τ}
- $H \rightarrow \mu\mu$: No excess observed yet at m_H =125 GeV
- $H \rightarrow bb$: An excess with 1.4 σ significance observed at m_H =125 GeV
- So far, everything looks compatible with the SM expectations

BACKUP BUCKET

$VH \rightarrow Vbb$ selection

$VH \rightarrow Vbb$ background modeling

24

$VH \rightarrow Vbb \ p_T^V \ distributions$

25

$VH \rightarrow Vbb \ m_{bb}$ distrubutions

$VH \rightarrow Vbb$ input variables

$VH \rightarrow Vbb$ cross-check with diboson production (VZ)

- Use VZ as cross-check which produces exactly the same final states
- Data and background + signal yield are compatible
- Significance for VZ:

4.9 σ observed

6.3 σ expected

Signal strength for VZ :

 μ = 0.52 \pm 0.32 (stat.) \pm 0.24 (syst.)

$VH \rightarrow bb$ Cut-based (di-jet) mass analysis[®]

$VH \rightarrow Vbb S/B$ sorted events

$VH \rightarrow Vbb$ results

BDT inputs

 $H \rightarrow \tau \tau$

 $VH \rightarrow Vbb$

Variable	VBF			Boosted		Variable	0 Lopton	1 Lopton	9 Lopton	
variable	$\tau_{\rm lep}\tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$	variable	0-Lepton	1-Lepton	2-Lepton
$m_{\tau\tau}^{\rm MMC}$	•	•	•	•	•	•	p_{T}^{V}		×	×
$\Delta R(\tau_1, \tau_2)$	•	•	•		•	•	$E_{\rm T}^{\rm miss}$	×	×	×
$\Delta \eta(j_1, j_2)$	•	•	•				$p_{\mathrm{T}}^{b_1}$	×	×	×
m_{j_1, j_2}	•	•	•				$n_{m}^{b_2}$	×	×	×
$\eta_{j_1} \times \eta_{j_2}$		•	•				$P'\Gamma$			
$p_{\rm T}^{\rm lotal}$		•	•				m_{bb}	×	×	×
Sum <i>p</i> _T					•	•	$\Delta R(b_1, b_2)$	×	×	×
$p_{\rm T}(\tau_1)/p_{\rm T}(\tau_2)$					•	•	$ \Delta\eta(b_1,b_2) $	×		×
$E_{\rm T}^{\rm mas}\phi$ centrality		•	•	•	•	•	$\Delta \phi(V, bb)$	×	×	×
m_{ℓ,ℓ,j_1}				•			$-\varphi(r, oo)$			
m_{ℓ_1,ℓ_2}				•			$ \Delta\eta(V,bb) $			×
$\Delta \phi(\ell_1, \ell_2)$				•			H_{T}	×		
Sphericity				•			$\min[\Lambda \neq (\ell, h)]$			
$p_{\mathrm{T}}^{\ell_1}$				•			$\min[\Delta \varphi(\ell, 0)]$		×	
$p_{\mathrm{T}}^{j_1}$				•			$m_{\mathrm{T}}^{\prime\prime}$		×	
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•			$m_{\ell\ell}$			×
m _T		•			•		$MV1c(b_1)$	×	×	×
$\min(\Delta \eta_{\ell_1 \ell_2, jets})$	•						$MV1c(b_{2})$	~	~	~
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•						<i>M V</i> 10(02)	^	^	^
$C_{\eta_1,\eta_2}(\eta_\ell)$		•						Only	y in 3-jet ev	rents
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•						$p_{\mathbf{T}}^{\mathbf{jet}_{3}}$	×	×	×
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•				mbbi	×	×	×
$C_{\eta_1,\eta_2}(\eta_{\tau_2})$			•							

SR & CR

$H ightarrow au au ext{CR}$

Process	$ au_{ m lep} au_{ m lep}$	$ au_{\mathrm{lep}} au_{\mathrm{had}}$	$ au_{ m had} au_{ m had}$		
$Z \rightarrow \ell \ell$ -enriched	$80 < m_{\tau\tau}^{\rm vis} < 100 { m GeV}$				
	(same-flavour)				
Top control region	invert <i>b</i> -jet veto	invert <i>b</i> -jet veto and $m_{\rm T} > 40$ GeV			
Rest category			pass preselection,		
			fail VBF and Boosted selections		
$Z \rightarrow \tau \tau$ -enriched	$m_{\tau\tau}^{\rm HPTO} < 100 {\rm GeV}$	$m_{\rm T} < 40$ GeV and $m_{\tau\tau}^{\rm MMC} < 110$ GeV			
Fake-enriched	same sign τ decay products	same sign τ decay products			
W-enriched		$m_{\rm T} > 70~{\rm GeV}$			
Mass sideband			$m_{\tau\tau}^{\rm MMC} < 110$ GeV or $m_{\tau\tau}^{\rm MMC} > 150$ GeV		

These CRs are used together with 6 BDT output in SR

$VH \rightarrow Vbb \ SR$

	Dije	et-mass ana	lysis	MVA			
Channel	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton	
1-tag		MV1c		MV1c			
LL		m_{bb}		$BDT^{(*)}$	BI	TC	
MM 2-tag		m_{bb}			BDT	BDT	
TT		m_{bb}			BDT		

• MV1c in 1-tag is used for background constraint.

$H ightarrow au_{ m lep} au_{ m had}$ fake factor method

- Quark / gluon contribution for fake- τ
 - Fake-τ contribution from W+jets is dominated by quark-jets
 - Fake-τ contribution from multi-jet production is dominated by gluon-jets
- Define "anti-τ" control regions by inverting τ-identification criteria
 - Inverting $m_{\rm T}$ selection for W+jets
 - low $E_{\rm T}^{\rm miss}$ and loose lepton isolation for multi-jet
- Obtain different mis-identification probabilities ("Fake-Factor"), calculate weighted mean value according to

 Differences between quark- and gluon-dominated Fake-Factors used as systematic uncertainty (combined with statistical uncertainty from anti-τ data)

ATLAS-CONF-2013-108

34

$H \rightarrow \tau \tau$ important input variables 35

$H \rightarrow \tau \tau$ control regions

$H \rightarrow \tau \tau$ boosted signal regions

$H \rightarrow \tau \tau$ results

