

Beyond-the-Standard Model Higgs searches using the ATLAS experiment

Guillermo Hamity

University of the Witwatersrand On behalf of the ATLAS Collaboration

WORKSHOP ON DISCOVERY PHYSICS AT THE LHC, 1 December

- 2012: New boson discovered by CMS + ATLAS
- 2013: Mass and spin-parity studies revealed $m_H \approx 125.5 \text{ GeV}$

CERN-PH-EP-2013-103

No deviations from SM

• σ , BR and couplings of H show no deviation from SM within uncertainties

No deviations from SM

- σ , BR and couplings of H show no deviation from SM within uncertainties
- Higgs doublet responsible for EW symmetry breaking?

No deviations from SM

- σ, BR and couplings of H show no deviation from SM within uncertainties
- Higgs doublet responsible for EW symmetry breaking?
- Is Higgs sector minimal or extended? (BSM)

• SM Higgs sector has experimental constrains:

$$\rho \equiv m_W / (m_Z \cos \theta_W) \to 1$$

- 2HDM: Simple extension by adding complex Higgs doublet, SU(2).
- Assumptions:
 - CP-conservation
 - Softly broken \mathcal{Z}_2 symmetry ($\Phi_1 = -\Phi_1$)
 - $\circ~$ Electroweak symmetry breaking, and $v_1v_2 \neq 0$

8 fields

3 give mass to W^{\pm} and Z bosons, 5 physical scalar ("Higgs") fields

Five most difficult and elusive animals in Africa to hunt.

2HDMs

Degrees of freedom

h_{SM} coupling measurements

- Couplings of h_{2HDM} differs from h_{SM}
- 2HDM and MSSM, SM Couplings interpretation

Recent direct searches:

- $h/A/H \rightarrow \tau \tau ~(MSSM)$
- $H^+ \rightarrow \tau \nu + \text{jets} (2 \text{HDM} + \text{MSSM})$
- Di-Higgs resonances: $hh \rightarrow \gamma \gamma bb, hh \rightarrow 4b$
- $H \rightarrow WW$ (2HDM)

SM Coupling Measurements

Higgs coupling limits 2HDM

Constrains on new physics via Higgs coupling [1]

H coupling scale factor: $\frac{2HDM}{SM}$

2HDM constrain

- Assume $m_h \approx 125.5$ GeV
- Production and decay rates rescaled (scale factors)
- Ratios $\frac{2HDM}{SM}$ cast as functions of β and α
- Assumed same production modes as in the SM

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
K _{ll}	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha) / \sin(\beta)$
Кd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
ĸı	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

Likelihood limits

Obs & exp exclusion limits at 95% CL

ATLAS Preliminary

is = 8 TeV: [Ldt = 20.3 fb⁻¹

h -+ -- hh

 $\cos(\beta - \alpha)$

ATLAS-CONF-2014-010

Higgs coupling limits Simplified MSSM

Constrains on new physics via Higgs coupling [1] *MSSM is 2HDM Type-II

simplified MSSM constrain

- simplified MSSM is not general
- Assume $m_h \approx 125.5$ GeV
- Mass mixing matrix simplified s.t. Higgs couplings are functions of m_A and $\tan\beta$ only:

$$\kappa_V = \frac{s_d + \tan\beta s_u}{\sqrt{1 + \tan_2 \beta}}$$

$$\kappa_u = s_u \frac{\sqrt{1 + \tan_2 \beta}}{\tan\beta}$$

$$\kappa_d = s_d \sqrt{1 + \tan_2 \beta}$$

Likelihood scan $(m_A, \tan\beta)$

Observed (expected) lower limit at 95% CL: $m_A > 400$ (280) GeV for $2 \le \tan \beta \le 10$ Higher rate in boson decay than predicted by SM causing stronger limit. Simplified MSSM limited by $\kappa \le 1$

ATLAS-CONF-2014-010

Direct searches

Charged H $H^{\pm} \rightarrow \tau^{\pm} v + jets$

Search $H^{\pm} \rightarrow \tau^{\pm} v$ in hadronic final states: 19.5fb⁻¹ p-p at $\sqrt{s} = 8$ TeV ATLAS-CONF-2014-050 [2]

Split at $m_{top} \approx 173.3$ GeV

Low mass: $m_{H^+} < m_{top}$ $t \to bH^+ (m_{H^+} \in (80, 160))$

High mass: $m_{H^+} > m_{top}$

t associated $(m_{H^+} \in (180, 1000))$

Decay:

- $H^+ \rightarrow \tau^+ \nu$
- $W \rightarrow q\bar{q}$

Final States:

- τ_{had}, E^{miss}_T
- 2 b-jets (at least 1 for $m_{H^+} > m_{top}$)
- 2 q-jets from W_{had}
- no additional leptons

Charged II $H^{\pm} \rightarrow \tau^{\pm} v + \mathbf{jets}$

Data driven:

- True τ_{had} (embedding method)
 - μ+jets data events ('loose' selection)
 - μ REPLACED with MC τ_{had} decay (TAUOLA)
 - Distribution is normalized
- Misidentified jets

 - $^\circ~m_T$ distribution fit for 200-800 GeV

Simulated:

• Misidentified e/μ contribute 1—2% BKG

Sample	Low mass H^+ selection	High mass H^+ selection
True τ_{had} (embedding method)	$2900 \pm 60 \pm 500$	$3400 \pm 60 \pm 400$
Misidentified jet $\rightarrow \tau_{had-vis}$	490 ± 9 ± 80	$990 \pm 15 \pm 160$
Misidentified $e \rightarrow \tau_{had-vis}$	$15 \pm 3 \pm 6$	20 ± 2 ± 9
Misidentified $\mu \rightarrow \tau_{had-vis}$	$18 \pm 3 \pm 8$	$37 \pm 5 \pm 8$
All SM backgrounds	$3400 \pm 60 \pm 500$	$4420 \pm 70 \pm 500$
Data	3244	4474
$H^+(m_{H^+} = 130 \text{GeV})$	230 ± 10 ± 40	
H^+ ($m_{H^+} = 250 \text{ GeV}$)		$58 \pm 1 \pm 9$

ATLAS-CONF-2014-050

High Mass

Charged II $H^{\pm} \rightarrow \tau^{\pm} v + \mathbf{jets}$

ATLAS-CONF-2014-050

- Expected limits derived with asymptotic approximation
- Limits reject 95% CL
- Expected and observed limits agree within systematics
- Agreement with SM

 $B(t \rightarrow bH^+) \times B(H^+ \rightarrow \tau^+ \nu)$

between 0.23% and 1.3% (
$$m_{H^+} = 80-160 \text{ GeV}$$
)

 $\sigma(pp \to tH^+ + X) \times B(H^+ \to \tau^+ \nu)$

between 0.76 pb and 4.5 fb ($m_{H^+}=180\text{-}1000~{\rm GeV})$

$h/A/H \to \tau\tau$

Search for neutral Higgs bosons (MSSM) JHEP11(2014)056 [3]

MSSM contains two Higgs doublets (2HDM)

- Upper bound $m_h \sim 135 \text{ GeV}$
- $m_H \approx m_A \approx m_{H^{\pm}}$
- *m_h* properties similar to *m_{HSM}*

Scenarios

•
$$m_h^{max}$$
: $m_h \lesssim 135$

$$m_h^{mod-}$$
 & m_h^{mod+} : $m_h \lesssim 126$

- Two parameters: m_A , $\tan \beta$ increases parameter space
 - Increased BR in $\tau\tau$ and bb decay.
 - Higher b-associated cross section.
 - Search channels:
 - $\tau_e \tau_\mu$ (6%) at 20.3 fb⁻¹
 - $\circ~\tau_{lep}\tau_{had}$ (46%) at 20.3 fb $^{-1}$
 - $\circ~\tau_{had}\,\tau_{had}$ (42%) at 19.5 ${\rm fb}^{-1}$

 $\begin{array}{l} {\rm mod} \pm {\rm different} \mbox{ in } \frac{X_t}{M_{SUSY}}. \\ M_{SUSY} \mbox{ - soft-SUSY-breaking} \\ {\rm squark} \mbox{ mass} \\ X_t \mbox{ - stop mixing parameter} \end{array}$

Different decays in ATLAS detector:

1- or 3- prong jet

 $m_{\tau\tau}$ reconstruction uses **Missing Mass Calculator** Assume non-zero angle between τs and v sSystem of equations with 6-8 unknowns Most likely solution chosen (likelihood)

Nucl. Instrum. Methods, A654, p481-489

 $m_{\tau\tau}^{\text{MMC}}$ is final discriminating variable for $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$

$h/A/H \rightarrow \tau_e \tau_\mu$ and $\tau_{lep} \tau_{had}$

$\tau_e \tau_\mu$ and $\tau_{lep} \tau_{had}$ Backgrounds

- True bkg: $Z/\gamma * \to \tau \tau$
 - Estimated from τ embedded $Z/\gamma*\to\mu\mu$ data
 - Normalized using NNLO Z/γ * +jets cross section
- Multi-jet
 - two dimensional sideband (A-BCD)

	opposite charge	same charge
lep iso	Α	В
fail iso	С	D
$n = {}^{n}C =$		

 $n_A = \frac{n_C}{n_D} n_B$

JHEP11(2014)056

Multi-Jet is dominant background

• Total $\tau\tau$ transverse mass

$$m_{T}^{total} = \sqrt{m_{T}^{2}(\tau_{1},\tau_{2}) + m_{T}^{2}(\tau_{1},E_{T}^{miss}) + m_{T}^{2}(\tau_{2},E_{T}^{miss})}$$

· Simulation used for remaining Bkg.

Single τ_{had} trigger

- τ_2 fail selection (Control Region)
- Normalized with fake efficiencies (QCD)

$\tau_{had} \tau_{had}$ trigger

Sideband method: $\tau\tau$ charge, E_T^{miss}

400

$h/A/H \rightarrow \tau \tau$

Exclusion limits:

calculated with asymptotic approximation

- $\tau_e \tau_\mu + \tau_{lep} \tau_{had}$ (90 $\leq m_A < 200$ GeV) Sensitive to h, H, A
- $\tau_{lep} \tau_{had}$ (high mass) + $\tau_{had} \tau_{had}$ ($m_A \ge 200$ GeV) Sensitive to H, A

```
m_h^{mod^{\pm}} scenario
```

• MSSM $(m_h^{mod}) \notin [m_A < 200] \cup [\tan \beta < 5.5]$ JHEP11(2014)056

m_h^{max} scenario

• If
$$m_h \equiv m_{h_{SM}}~(125.5 \pm 3~{\rm GeV})$$

• MSSM $(m_h^{max}) \notin [m_A < 160] \cup [\tan\beta < 4] \cup [\tan\beta > 10]$

JHEP11(2014)056

Exclusion of single scalar boson ϕ

ggF or b-associated $\rightarrow \tau \tau$

95% upper limit CL

ggF exclusion

- $\sigma \times BR > 29$ pb $(M_{\phi} = 90 \text{GeV})$
- $\sigma \times BR > 7.4 \text{ pb} (M_{\phi} = 1 \text{TeV})$

b-associated exclusion

• $\sigma \times BR > 6.4 \text{ pb} (M_{\phi} = 90 \text{GeV})$

Di Higgs Resonant Searches

Di-Higgs SM rate too low to be observed at current LHC lumi [6]

2HDM XS can be greater than 1 pb [7]

RU-NHETC-2013-07

Di Higgs Resonant Searches

$hh \rightarrow bb\gamma\gamma$

HIGG-2013-29

- Non-resonant search expected 1.5 events (1.3 \pm 0.5 fitted bkg and 0.17 \pm 0.04 $H_{SM})$ Observed 5 events (2.4 σ)
- Resonant search: $min\{p_0\} = 0.002$ at $m_X = 300$ GeV (3 σ) Chance of fluctuation within range is 0.019 (2.1 σ)

Di Higgs Resonant Searches

$hh \rightarrow bbbb$

Conclusion

- · Searches for BSM physics are currently taking place in ATLAS.
- Higgs coupling measurements and direct searches are used.
- ATLAS has performed various searches for BSM (2HDM/MSSM), the most recent of which where shown today.
 - $h/A/H \rightarrow \tau \tau$ (MSSM)
 - $H^+ > \tau v + jets (2HDM + MSSM)$
 - Di-Higgs resonances.
- Where no signal is observed:
 - Mode independent UL have been placed on XS and BR.
 - UL have been placed on XS and BR for specific bosons.
 - Phasespace exclusions (2HDM/MSSM).
- Run-II approaching with higher center of mass providing sensitivity improvements in near future.

ATL-PHYS-PUB-2013-016

The ATLAS Collaboration

Constraints on New Phenomena via Higgs Boson Coupling Measurements with the ATLAS Detector

ATLAS-CONF-2014-010, 2014.

The ATLAS Collaboration

Search for charged Higgs bosons decaying via $H^{\pm} \rightarrow \tau^{\pm} v$ in hadronic final states using pp collision data at sqrts = 8 TeV with the ATLAS detector. ATLAS-CONF-2014-050, 2014.

The ATLAS Collaboration

Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector JHEP11(2014)056, 2014.

The ATLAS Collaboration

Search For Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State using pp Collision Data at $\sqrt{s} = 8$ TeV from the ATLAS Detector HIGG-2013-29, 2014.

The ATLAS Collaboration

A search for resonant Higgs-pair production in the $b\bar{b}b\bar{b}$ final state in pp collisions at $\sqrt{s} = 8$ TeV ATLAS-CONF-2014-005, 2014.

Baglio, J. and Djouadi, A. and Grober, R. et al. The measurement of the Higgs self-coupling at the LHC:theoretical status JHEP 1304 (2013) 151, 2013.

Nathaniel, C. and Jamison, G. and Scott, T. Searching for Signs of the Second Higgs Doublet RU-NHETC-2013-07, 2013.

ATLAS Preliminary

H→WW→evuv

Exp. 95% CL
 Exp. 99% CL
 Obs. 95% CL

Obs. 99% CL

m_H [GeV]

300

250

2HDM Type-I tanβ=3

$H \rightarrow WW$

cos(α)

0.5

-0.5

150

Backup

200

$H \rightarrow WW$

Backup

Backup

$H^{\pm} \rightarrow \tau^{\pm} \nu$ + jets

$$N_{\tau} = N_{\text{embedded}} \cdot \left(1 - c_{\tau \to \mu}\right) \frac{\epsilon^{\tau + E_{\text{T}}^{\text{miss}-\text{trigger}}}}{\epsilon^{\mu - \text{ID}, \text{trigger}}} \times \mathcal{B}(\tau \to \text{hadrons} + \nu),$$

Low mass

High mass

Backup

$H^{\pm} \rightarrow \tau^{\pm} \nu + \mathbf{jets}$

High Mass

 $\frac{\text{MSSM tau tau}}{\text{Result of } m_h^{mod}}$

