

A (short) review of Standard Model studies in CMS

Simon de Visscher (CERN) on behalf of the CMS collaboration

Kruger 2014, Dec 2nd

mardi 2 décembre 2014

Disclaimer

- This talk does **not** do a full review of Standard Model (group) CMS results
 - more than 60 public notes and papers since 2011.
- Selection: only recent and/or representative studies are discussed here
- For more informations, check out any SMP CMS public results
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
 - plots
 - notes, papers
 - link to HepData, to Rivet analysis details

Outline

- PDF, α_s
- W, Z boson production in association or not with jets
- diboson production: aTGC and aQGC

Kruger 2014, Dec 2nd

mardi 2 décembre 2014

3

Good agreement between unfolded data and NLO prediction on order(s) of magnitude in Pt, M_{jj} !!

PDF from n-jet cross-section

mardi 2 décembre 2014

Fract. uncert.

 $(^{+.0}_{X})^{+.0}$ $(^{+.0}_{X})^{-}$ $(^{-}_{X})^{-}$ $(^{-}_{X})^{-}$

1.5

1.0

0.5

0.0

0.4 0.2

0.0 0.2 -0.4

 10^{-4}

 10^{-3}

O²=1.9 GeV²

q-PDF from W+c and Aw

[JHEP 02 (2014) 013] W+c: probe s-quark PDF

Strategy: OS-SS to remove tt, single-top, Wcc, Wbb, ...

[PRD 90 (2014) 032004]

Aw measurement: u, d quarks PDF

$$A_W = \frac{W^+ - W^-}{W^+ + W^-} \sim \frac{u_v - d_v}{u_v + d_v + 2u_{sea}}$$

 $A_{W} = \frac{W - W}{W + W} \approx \frac{u_{v} - d_{v}}{u_{v} + d_{v} + 2u_{sea}}$ Excess of W⁺ over W⁻ and rapidity

PDF from W+c and Aw

[PRD 90 (2014) 032004]

HeraFitter package used for the analysis Data: Hera I DIS NLO predictions available (MCFM)

α_s from n-jet cross-section

Use jet Pt to extract α_s(Q) *(NP+MPI)-corrections applied to NLOJet prediction

I) Fit on all eta ranges to extract $\alpha_s(M_Z)$

 $\alpha_S(M_Z) = 0.1185 \pm 0.0019 \,(\text{exp}) \pm 0.0028 \,(\text{PDF}) \pm 0.0004 \,(\text{NP})^{+0.0053}_{-0.0024} \,(\text{scale})$

Vector boson, jets

Double differential cross section $d^2\sigma/dyd$

- Why study the emission of a vector boson, with or without associated jets ?
 - Background for searches
 - Sensitivity to
 - soft physics description
 - merging techniques in soft/mid-scales
 - QCD/QED corrections at harder scales
- stress test of event generators/calculations
 - tree-level vs NLO vs NNLO
 - Madgraph_aMC@NLO, Powheg, Sherpa, BlackHat,...
 - Parton shower algos (+Tunes)
 - Pythia6 vs Pythia8 vs Herwig vs....
 - Merging schemes (scale dependencies,...)
 - KtMLM vs ShowerKt vs CKKW-L vs FxFx vs UMEPS vs UNLOPS vs...

Dynamics of W, Z bosons: dσ/dp_T

10²

p^w_T [GeV]

10

Z+jets

Trend observed for both Sherpa@NLO and MG prediction Slighly better job by Sherpa@NLO for Pt(Jet)

14

Kruger 2014, Dec 2nd

Z/γ+jets ratio

- Both Z and γ+jets are large background processes for many searches
 - Particularly relevant for the modeling of Z→vv+jets (SUSY) in MET+jets final state
- Exp. final state:
 - ≥ lept + >=1 jet, Pt>20 GeV, |η|<2.4, trigger match, M(II)∈[81,101] GeV
 - γ + >=1 jet, Pt>100 GeV, $|\eta_{\gamma}|$ <1.4
 - >= | jets: pt>30 GeV, |η|<2.4
 - DeltaR(photon, γ OR lepton)>0.5

Z/γ+jets ratio

mardi 2 décembre 2014

W+b-jets, Z+b-jets, Z+ b-hadron

diboson: aT/Q GC

diboson studies

- Why?
 - Background for searches
 - ZZ, WW, γγ
 - Gate to explore «extended» Standard Model (see Fabio's talk)
 - moving to dim 6 or 8: adds new couplings without involving new particles
 - Trilinear anomalous gauge couplings
 - **ΖΖ**Υ, ΖΥΥ, WWΥ, ...
 - Quartic gauge couplings
 - WWWW,WWZZ,..
 - diboson process xsec are well predicted by theory (NLO, NNLO)
 - Any significant deviation could be a sign of anomalous gauge coupling

Neutral ZZY and ZYY aTGC: ZY and ZZ

1000

0.005 0.01 0.015 0.02

 f_4^{Z}

0

-0.02-0.015-0.01-0.005

CMS

aQGC using same sign WW+2 jets

[SMP-13-015]

Same sign W bosons: suppresses QCD background VBS⇒Large rapidity + high mass between forward jets

So far, no evidence for aQGC: new couplings (Phys. Rev. D 74 (2006) 073005) compatible with 0

- Standard model processes are studied in CMS
 - ▶ more than 60 papers or public notes since ~2010
 - spans various kind of final states
 - \blacktriangleright QCD,W+c,W asymmetry: impact on PDF, α_s
 - V,V+jets: stress test for tree-level, NLO, NNLO, 4F vs 5F, merging schemes
 - VV: «extended» version of the Standard Model probed with aTGC and aQGC.
- One important message from Run I
 - Prediction from theory existing/used in Run I are not yet providing a «universal» solution for background predictions. A new era has started with the advent of merged ME+PS @ NLO event generators: one of the first Run II todo is test them as accurately as possible, and provide a quick feedback to the theory side

Backup slides

Testing (ME+)PS predictions on 3 and 4-jet cross-section

1.

[QCD-11-006]

MG5+P6: most consistent with data (multi-partonic TL prediction) Depending on variable, P6 and H++ can do as good as MG

CMS

scale-x correlation

SMP-12-028 uncertainties

Systematic source		Shift in standard deviations
JEC0	absolute jet energy scale	0.01
JEC1	MC extrapolation	-0.26
JEC2a	single-particle response barrel	1.03
JEC2b	single-particle response endcap	-1.64
JEC2c	single-particle decorrelation $ y < 0.5$	(-0.11
JEC2d	single-particle decorrelation $0.5 \le y < 1.0$	0.08
JEC2e	single-particle decorrelation $1.0 \le y < 1.5$	0.85
JEC3	jet flavor correction	0.05
JEC4	time-dependent detector effects	-0.21
JEC5	jet $p_{\rm T}$ resolution in endcap 1	0.68
JEC6	jet $p_{\rm T}$ resolution in endcap 2	-0.38
JEC7	jet $p_{\rm T}$ resolution in HF	0.00
JEC8	correction for final-state radiation	-0.01
JEC9	statistical uncertainty of η -dependent correction for endcap	-0.38
JEC10	statistical uncertainty of η -dependent correction for HF	0.00
JEC11	data-MC difference in η -dependent pileup correction	0.89
JEC12	residual out-of-time pileup correction for prescaled triggers	-0.13
JEC13	offset dependence in pileup correction	0.10
JEC14	MC pileup bias correction	0.29
JEC15	jet rate dependent pileup correction	0.43
Unfolding		-0.31
Luminosity		0.10
NP correction		0.62
Kruger 2014, Dec 2nd		

PDF from Drell-Yan: $d^2\sigma/dmdy$

data/MC comparisons RESBOS: NNLL/NLO QT resummation in W, Z processes FEWZ: NNLO prediction of W, Z spectra MG5: tree-level prediction, interfaced with Pythia6 POWHEG: NLO event generator, interfaced with Pythia6

Z+jets: Jet Pt

7 TeV: same trend for powheg+P6 and MG, inverted trend for Sherpa 8 TeV: idem for MG and Sherpa

8 TeV: same for MG and Sherpa

Note: MG and Sherpa ME contains up to 4j in ME calculation

Neutral ZZY and ZYY aTGC: ZZ process

32

Scrutinize in 4 leptons final state

