A (short) review of Standard Model studies in CMS

Simon de Visscher (CERN)
on behalf of the CMS collaboration

Disclaimer

- This talk does not do a full review of Standard Model (group) CMS results - more than 60 public notes and papers since 201I.
- Selection: only recent and/or representative studies are discussed here
- For more informations, check out any SMP CMS public results
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP
- plots
- notes, papers
- link to HepData, to Rivet analysis details

Outline

- PDF, α_{s}
- W, Z boson production in association or not with jets
- diboson production:aTGC and aQGC

PDF, α_{s}

$\sigma \sim \sigma_{H I} \times P D F$

PDF from \mathbf{n}-jet cross-section

Good agreement between unfolded data and NLO prediction on order(s) of magnitude in $\mathrm{Pt}, \mathrm{M}_{\mathrm{jj}}$!!
Small differences resulting on PDF choice \Rightarrow allows to constrains PDF
q-PDF? g-PDF? depends on their correlation with variable In general g-PDF is better constrained by QCD events

PDF from \mathbf{n}-jet cross-section

HeraFitter package used to constraint the PDFs

- CMS Jet Pt data: input
- input compared with prediction from theory (NLOJet)
- PDF parameters chosen to fit the theory to the data

Reduction of uncertainties, especially for g-PDF

Impact on all PDF's is present, here at $\mathrm{Q}^{2}=1.9 \mathrm{GeV}^{2}$

$q-P D F$ from $W+c$ and $A w$

[JHEP 02 (2014) 013]

W+c: probe s-quark PDF

$D^{ \pm} \rightarrow K \pi \pi, D^{0} \rightarrow K \pi, D^{* \pm} \rightarrow D^{0} \pi \rightarrow K \pi \pi$
Strategy: OS-SS to remove tt, single-top, Wcc, Wbb, ...

[PRD 90 (2014) 032004]
Aw measurement: u, d quarks PDF

$$
A_{W}=\frac{W^{+}-W^{-}}{W^{+}+W^{-}} \sim \frac{u_{v}-d_{v}}{u_{v}+d_{v}+2 u_{\text {sea }}}
$$

Excess of W^{+}over W^{-}and rapidity

Kruger 2014, Dec 2nd

PDF from W+c and Aw

[PRD 90 (2014) 032004]
HeraFitter package used for the analysis
Data: Hera I DIS
NLO predictions available (MCFM)

α_{s} from $\mathbf{n - j e t}$ cross-section

[SMP-I2-028]
Use jet P t to extract $\alpha_{s}(Q)$ *(NP+MPI)-corrections applied to NLOJet prediction
I) Fit on all eta ranges to extract $\alpha_{s}\left(M_{z}\right)$

$$
\alpha_{S}\left(M_{\mathrm{Z}}\right)=0.1185 \pm 0.0019(\exp) \pm 0.0028(\mathrm{PDF}) \pm 0.0004(\mathrm{NP})_{-0.0024}^{+0.0053}(\text { scale })
$$

2) Bin in Jet Pt , evaluate $\alpha_{s}\left(M_{z}\right)$ and extrapolate using a 2 -loop solution (HOPPET-RGE)

Vector boson, jets

V, V+jets

- Why study the emission of a vector boson, with or without associated jets ?
- Background for searches
- Sensitivity to
- soft physics description
- merging techniques in soft/mid-scales
- QCD/QED corrections at harder scales
- stress test of event generators/calculations

- tree-level vs NLO vs NNLO
- Madgraph_aMC@NLO, Powheg, Sherpa, BlackHat,...
- Parton shower algos (+Tunes)
- Pythia 6 vs Pythia vs Herwig vs... ...
- Merging schemes (scale dependencies,...)
- KtMLM vs ShowerKt vs CKKW-L vs FxFx vs UMEPS vs UNLOPS vs...

Dynamics of \mathbf{W}, \mathbf{Z} bosons: $\mathbf{d \sigma} / \mathrm{dp}_{\mathrm{T}}$

- Very simple final state
- 1 or 2 leptons
- Large statistics
- ~\% level uncertainty

CMS Preliminary

Trend observed for both Sherpa@NLO and MG prediction Slighly better job by Sherpa@NLO for Pt(Jet)

CMS Preliminary
$19.6 \mathrm{fb}^{-1}(8 \mathrm{TeV})$

Severe trend for Sherpa
More reasonable for MG
Could be also considered to constraint PDFs

[SMP-14-009]

Double differential measurement of jet kinematics.
Eta coverage extended to 4.7

W+jets

NLO: agreement is reasonable LO:

NJet prediction is generally ok (within uncertainties)
Jet pt spectrum is overestimated

$Z / \gamma+j e t s$ ratio

[SMP-I4-005]

- Why Z / γ ?
- In high Pt

- Both Z and γ^{+}jets are large background processes for many searches
- Particularly relevant for the modeling of $\mathrm{Z} \rightarrow \mathrm{VV}+j$ jets (SUSY) in MET+jets final state
- Exp. final state:
- 2 lept + >=I jet, Pt>20 GeV, $|\eta|<2.4$, trigger match, $M(I I) \in[8 I, I 0 I] G e V$
- $\gamma+>=1$ jet, $\mathrm{Pt}>100 \mathrm{GeV},\left|\eta_{\gamma}\right|<1.4$
- >= I jets: pt>30 GeV, $|\eta|<2.4$
- DeltaR(photon, γ OR lepton) >0.5

$Z / \gamma+j e t s$ ratio

W+b-jets, Z+b-jets, Z+ b-hadron

diboson: aT/Q GC

diboson studies

- Why?
- Background for searches
- ZZ,WW, YY
- Gate to explore «extended» Standard Model (see Fabio's talk)
- moving to dim 6 or 8 : adds new couplings without involving new particles
- Trilinear anomalous gauge couplings
, ZZY, ZYY,WWY,...
- Quartic gauge couplings
- wwww,wwzz,..
- diboson process xsec are well predicted by theory (NLO, NNLO)
- Any significant deviation could be a sign of anomalous gauge coupling

Neutral $Z_{Y} Z_{\gamma}$ and $Z_{Y \gamma}$ aTGC: Z_{Y} and $Z Z$

So far, no evidence for aTGC: new couplings compatible with 0

Same conclusion for studies with other FS

ZZ (2|2v)

f_{4}^{Z}

aQGC using same sign WW+2 jets

Same sign W bosons: suppresses QCD background $\mathrm{VBS} \Rightarrow$ Large rapidity + high mass between forward jets

Limits (here on 2 couplings only)

So far, no evidence for aQGC: new couplings (Phys. Rev. D 74 (2006) 073005) compatible with 0

Conclusion

- Standard model processes are studied in CMS
- more than 60 papers or public notes since ~ 2010
- spans various kind of final states
- QCD, W+c, W asymmetry: impact on PDF, α_{s}
- V,V+jets: stress test for tree-level, NLO, NNLO, 4F vs 5F, merging schemes
- VV: «extended» version of the Standard Model probed with aTGC and aQGC.
- One important message from Run I
- Prediction from theory existing/used in Run I are not yet providing a «universal» solution for background predictions. A new era has started with the advent of merged ME+PS @ NLO event generators: one of the first Run II todo is test them as accurately as possible, and provide a quick feedback to the theory side

Backup slides

MG5+P6: most consistent with data (multi-partonic TL prediction) Depending on variable, P6 and H++ can do as good as MG
scale-x correlation

SMP-12-028 uncertainties

Systematic source
Shift in standard deviations

JEC0	absolute jet energy scale	0.01
JEC1	MC extrapolation	-0.26
JEC2a	single-particle response barrel	1.03
JEC2b	single-particle response endcap	-1.64
JEC2c	single-particle decorrelation $\|y\|<0.5$	-0.11
JEC2d	single-particle decorrelation $0.5 \leq\|y\|<1.0$	0.85
JEC2e	single-particle decorrelation $1.0 \leq\|y\|<1.5$	0.05
JEC3	jet flavor correction	-0.21
JEC4	time-dependent detector effects	0.68
JEC5	jet $p_{\text {T }}$ resolution in endcap 1	-0.38
JEC6	jet $p_{\text {T }}$ resolution in endcap 2	0.00
JEC7	jet $p_{\text {T }}$ resolution in HF	-0.01
JEC8	correction for final-state radiation	-0.38
JEC9	statistical uncertainty of η-dependent correction for endcap	0.00
JEC10	statistical uncertainty of η-dependent correction for HF	0.89
JEC11	data-MC difference in η-dependent pileup correction	-0.13
JEC12	residual out-of-time pileup correction for prescaled triggers	0.10
JEC13	offset dependence in pileup correction	0.29
JEC14	MC pileup bias correction	0.43
JEC15	jet rate dependent pileup correction	-0.31
Unfolding	0.10	
Luminosity	0.62	
NP correction		

[SMP-14-003]
Classical channel to test QCD calculations and PDF

Description of $M(I I)$ over 10 orders of magnitude!
 pre-FSR DY $8 / 7 \mathrm{TeV}$ ratio: entirely depending on sqrt(s) and x !

V+X

- Drell-Yan

- Unfolded to:
- $M(\mu \mu) \in[81,101]$
- $\operatorname{Pt}(\mu)>25(I 0),|\eta(\mu)|<2.1(2.4)$
- W

- Unfolded to
- $\mathrm{Pt}(\mathrm{e})>25,|\mathrm{n}(\mathrm{e})|<2.4$
- $\operatorname{Pt}(\mu)>20,|\eta(\mu)|<2.1$
data/MC comparisons
RESBOS: NNLL/NLO Q_{T} resummation in W, Z processes
FEWZ: NNLO prediction of W, Z spectra
MG5: tree-level prediction, interfaced with Pythia6
POWHEG: NLO event generator, interfaced with Pythia6

Z+jets: Jet Pt

7 TeV : same trend for powheg+P6 and MG, inverted trend for Sherpa 8 TeV : idem for MG and Sherpa

Z+jets

7 TeV : -powheg+P6 does the best job
-trends for MG and Sherpa (No theory uncertainties included)
8 TeV : same for MG and Sherpa
Note: MG and Sherpa ME contains up to 4 j in ME calculation

Neutral $Z^{Z} Z_{\gamma}$ and $Z_{\gamma \gamma}$ aTGC: $Z Z$ process

Scrutinize in 4 leptons final state
[SMP-13-005]

