Search for new massive resonances at CMS Kruger 2014

Otman Charaf

University of Alabama

December 5th 2014

< ⊒ >

э

Introduction

- The Higgs boson discovery brought the last piece of the SM
- But many extensions of the SM could manifest at higher energies
- A myriad of models probed in CMS Exotica, in almost every channel
 - Essentially looking for a peak over the background in the invariant mass distribution.
 - Try to be as model independent as possible
 - Very specific reconstruction techniques and selection strategies due to boosted objects
- Not all searches covered here → https://twiki.cern.ch/twiki/ bin/view/CMSPublic/PhysicsResultsEXO
- Almost all analyses presented here use the Particle-Flow reconstruction algorithm
 - reconstruct and identify individually all stable particles in the event (e, μ , γ , charged and neutral hadrons)
 - uses a thorough combination of all sub-detectors
 - improves performance

3

伺 と く き と く き と

- Dilepton resonances
- Dijet resonances
- VV semileptonic resonances
- VV/qV hadronic resonances
- WZ resonances in leptonic channel
- Three jet resonances
- Run 2 prospects

э

프 () () () (

Dilepton resonances

э

< 注 → < 注 →

Dilepton resonances $(X \rightarrow II)$ — CMS EXO-12-061

- Models: Randall-Sundrum, Sequential Standard Model, Z'_{ψ}
- Main backgrounds: irreducible Drell-Yan, $t\bar{t}$, QCD
- Lepton selection: shower shape + isolation
- Background estimation
 - Drell-Yan: shape from MC normalized to number of events in data
 - $t\bar{t}$, tW, VV, $\tau\tau$ derived from Monte Carlo but cross-checks with $e\mu$ method \rightarrow good agreement.
 - QCD multijets from double-differential fake rate method (E_t , η)

Dilepton resonances $(X \rightarrow II)$ — CMS EXO-12-061

- Statistical interpretation
 - key point in this analysis is limit setting on $R_{\sigma} = \sigma_{Z'}/\sigma_Z \rightarrow$ cancel some systematic uncertainties.
 - Extended unbinnned likelihood (Bayesian) combining both channels

프 () () () (

Dijet resonances

э

* 注入 * 注入

Dijet resonances (X
ightarrow qq/gg/qg) — CMS EXO-12-059

- Models: string resonances, scalar diquarks, excited quarks, axigluons, colorons, technicolor, Randall-Sundrum, KK
- Main background: QCD multijet
- "Wide" jets techniques
 - Take two leading jets and add all other jets to closest leading jet if within $\Delta R < R_{wide}$ ($R_{wide} = 1.1$)
 - Reduce sensitivity to gluon radiation
- Selection: $H_t = \sum p_{t,j} > 650$, $|\Delta \eta_{j_1 j_2}| < 1.3$, $M_{j_1 j_2} > 890$
- Background modeled through fit function: $f(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3/mx}}$, $x = \frac{M_{ij}}{\sqrt{s}}$

Dijet resonances $(X \rightarrow qq/gg/qg)$ — CMS EXO-12-059

- Main systematic uncertainties
 - Jet energy scale ightarrow 1.25% on M_{jj}
 - Jet energy resolution ightarrow 10% on M_{jj}
 - Background parametrization
- Statistical interpretation
 - Bayesian formalism
 - Independently at each value of the resonance mass

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.	
		[TeV]	[TeV]	
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]	
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]	
E ₆ Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]	
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]	
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]	
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]	
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]	
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]	

Dijet resonances (X ightarrow qq/gg/qg) — CMS EXO-12-059

Otman Charaf (University of Alabama) Search for new massive resonances at CMS

э

VV resonances

2

白 ト ・ ヨ ト ・ ヨ ト …

VV resonances

- Characterized by two boosted bosons which can decay either leptonically or hadronically
- $\bullet\,$ Hadronic decay: two jets merging into one due to boosting $\rightarrow\,$ jet substructure techniques
- \bullet Leptonic decay: lepton isolation cones overlap \rightarrow Modified isolation cone
- \bullet V-tagging: tag V-jet \rightarrow jet pruning algorithm
- Jet substructure techniques
 - Identify the subjets within the jet
 - Define a metric (N subjettiness) to quantify the capability of finding N subjets within a jet.

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{t,k} \min(\Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k}), d_{0} = R_{0} \sum_{k} p_{t,k}$$

- N-subjettiness is smaller for jets effectively formed from N subjets.
- For V ightarrow qq, cut on $au_{21}= au_2/ au_1$ ratio

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Jet pruning algorithm (Cambridge-Aachen algorithm)
 - Remove soft radiation components
 - Recluster each jet starting from original constituents using the CA algorithm and discard soft recombinations at each step

(a) Start with two protojets i an j
(b) Define
$$p_t^{\rho} = p_t^i + p_t^j$$

(c) $z = min(p_t^i/p_t^{\rho}, p_t^j/p_t^{\rho})$
(c) $D_{cut} = m_{orig}/p_{t,orig}$
(c) if $z < 0.1$ or $\Delta R_{i,j} > D_{cut}$, then soft \rightarrow discard protojet with min pt

- Usually, in addition, requirement on M_{jet} consistent with W/Z mass \rightarrow V-tagging
- Allows to reduce QCD multijet contribution
- Leptonic isolation cones overlap
 - Mask off specific geometric region around leptons

VV/qV hadronic resonances — arXiv 1405.1994v2

- $q^*
 ightarrow qV$, $G_{RS}
 ightarrow WW/ZZ$, $G_{bulk}
 ightarrow WW/ZZ$, W'
 ightarrow WZ
- Jet pruning, jet substructure, V-tagging
- Main background: QCD multijet
- Jet selection

• $\Delta \eta_{j_1 j_2} < 1.3$, $M_{j_1 j_2} > 890$, HP-jet $\tau_{21} < 0.5$, LP-jet $0.5 < \tau_{21} < 0.75$

- Background estimation
 - Fitting data: $f(x) = p_0 x^{p_1} / x^{p_2}$, $x = M_{ii} / \sqrt{s}$, in each channel
 - Main systematics: V-tagging: 7.5% (HP), 54% (LP)

VV/qV hadronic resonances — arXiv 1405.1994v2

- Statistical interpretation: asymptotic frequentist (CLs method)
- Most stringent to date

Process	Observed	Expected		
	limit (TeV)	limit (TeV)		
$q^* ightarrow qW$	3.2	3.0		
$q^* ightarrow qZ$	2.9	2.6		
$W' \to WZ$	1.7	1.6		
$G_{RS} \rightarrow WW$	1.2	1.3		

< 6 >

э

VV semileptonic resonances: $X \rightarrow VV \rightarrow l\nu qq$ or llqq — arXiv 1405.3447v2

- Two main components: $I\nu$ +V-jet and II+V-jet
- Lepton selection: isolation + shower shape
- Jet selection
 - $p_t > 30, \ |\eta| < 2.4$ HP-jet $au_{21} < 0.5, \ LP$ -jet $0.5 < au_{21} < 0.75$
 - jet pruning, jet substructure
 - V-jet: $65 < M_j < 105$ for W-jet and $70 < M_j < 110$ for Z-jet
- Final event selection
 - V-boson p_t , $\not\!\!E_t$, back-to-back selection
- Background estimation
 - After full selection, main background is V+jets
 - Overall normalization is done through fit in sidebands in M_j
 - Shape is taken from low *M_j* sideband using extrapolation function

VV semileptonic resonances: $X \rightarrow VV \rightarrow I\nu qq$ or Ilqq arXiv 1405.3447v2

Statistical interpretation

- Asymptotic frequentist method (CLs), unbinned shape analysis
- $\bullet\,$ Combine all categories and further with all hadronic channel $\rightarrow\,$ 15-20% more stringent

- A - E - N

WZ resonances in leptonic channel

-

→ ∢ ∃ →

WZ resonances in leptonic channel $(X \rightarrow WZ \rightarrow l\nu ll)$ arXiv 1407.3476v1

- Lepton selection: isolation + shower shape
- \bullet Cone isolation overlap \rightarrow mask off specific region
- Event selection
 - Opposite charge, 71 $< M_{l^+l^-} <$ 111 GeV, ${\not\!\!E_t} >$ 30 GeV, $M_{3l} >$ 120 GeV, $\Delta R(l_Z, l_W) >$ 0.3
 - Additional criteria on $L_t = \sum p_{t,l}$ and M_{WZ} optimized for best expected limit

18/30

WZ resonances in leptonic channel $(X \rightarrow WZ \rightarrow l\nu ll)$ arXiv 1407.3476v1

- Statistical interpretation
 - counting experiment (Bayesian formalism)
 - W'_{SSM} limit: 1470 GeV, $\rho_{TC}(LSTC)$ limit: 1140 GeV
 - Possibility to modify $g_{W'WZ}$ and put limits on coupling.

WZ resonances in leptonic channel ($X \rightarrow WZ \rightarrow l\nu ll$) arXiv 1407.3476v1

 $\mu\mu e: M_{WZ} = 1250 \text{ GeV}, L_t = 733 \text{ GeV}, E_t = 458 \text{ GeV}$

A B + A B +

Three jet resonances

э

프 () () () (

Light/heavy flavour three jet resonances $XX \rightarrow qqqqqq$ — arXiv 1311.1799v3

- Models: Heavy coloured fermions or RPV gluinos
- Topology: events with at least 6 jets
- Jet ensemble technique: recombine jets to find correct triplets
- First analysis of its kind to include heavy flavour
- Two main components:
 - Light flavour inclusive mass search
 - Heavy flavour high and low mass searches
- Optimized 6_{th} jet p_t cut (inclusive and high mass heavy search)
- Optimized 4_{th} jet p_t cut and b-tagging (low mass heavy search)
- Triplet invariant mass: $M_{jjj} < \sum_{i=1}^{3} p_{t}^{i} \Delta$
 - Observed correlation between M_{ijj} and $\sum p_t^i$ for background and incorrectly recombined signal triplets
 - Δ chosen so as to have as broad a range as possible for $M_X \to \Delta =$ 110 GeV

Light/heavy flavour three jet resonances $XX \rightarrow qqqqqq - arXiv 1311.1799v3$

- Sphericity: $S = (3/2) \times (\lambda_2 + \lambda_3)$, λ_i eigenvalues of $S^{\alpha\beta} = \frac{\sum p^{\alpha}p^{\beta}}{\sum |p|^2}$
 - Signal events are more spherical than background events
 - No significant difference in the low mass heavy flavour search

Selection	Inclusive	Heavy-flavour search		
criteria	search	low mass	high mass	
Mass range	400-1500 GeV	200-600 GeV	600-1500 GeV	
Δ	110 GeV	110 GeV	110 GeV	
Min. fourth-jet p_T	110 GeV	80 GeV	110 GeV	
Min. sixth-jet p_T	110 GeV	60 GeV	110 GeV	
Min. sphericity	0.4	_	0.4	

(B)

Light/heavy flavour three jet resonances $XX \rightarrow qqqqqq$ — arXiv 1311.1799v3

- Background estimation
 - Light and high mass heavy flavour: modeled with a dijet function
 - Low mass heavy flavour: $t\bar{t}$ from MC, SM multi jet shape from b-jet control region
 - *tī* estimation technique validation

Light/heavy flavour three jet resonances $XX \rightarrow qqqqqq$ — arXiv 1311.1799v3

- Statistical interpretation
 - Asymptotic frequentist approach (CLs)
 - Profile likelihood

RPVĝ	-1 σ limit (GeV)	Central limit (GeV)
Light flavour	650	670
Heavy flavour	200-835	200-855

э

프 () () () (

Run 2 prospects

2

< 注入 < 注入

Run2 prospects

- $\bullet\,$ LHC is expected to restart around May 2015 with increased luminosity and \sqrt{s}
- Programme up to now is to collect 1 fb^{-1} of 50 ns data (\sim 3 weeks)
- Goal is to reach $\sim 10~ fb^{-1}$ by end of 2015

Period	N _{bunch} [10 ¹¹]	ε* [μm]	k	β* [cm]	L [cm ⁻² s ⁻¹]	<µ>	Days(*)	∫L [fb ⁻¹]
50 ns	1.2	2.2	≈1370	80	5.3×10 ³³	30	21	≈1
25 ns / 1	1.2	2.5	≈2500	80	8.1×10 ³³	26	44	≈4
25 ns / 2	1.2	2.5	≈2500	40	14.7×10 ³³	45	46	≈13

• What we can reach with X fb^{-1} of data in terms of limits ?

http://collider-reach.web.cern.ch/collider-reach/

(20 fb⁻¹) (PartonLuminosity($M_x(8 TeV)$)) \simeq (13 TeV luminosity) (PartonLuminosity($M_x(13 TeV)$))

Run2 prospects

- Sensitive to around 3 TeV with $\sim 1~{\it fb^{-1}}$
- $\bullet\,$ But with higher σ model, could push the limit further

< ∃⇒

э

Conclusions

- Many searches in almost every decay channel
- Stringent limits (many most stringent to date)
- Novel techniques for analyses involving jets
- Dedicated isolation techniques for analyses involving leptons
- Standard Model is still holding up...

 $M_{jj} = 5.15 \text{ TeV}$

...but discovery could be around the corner in 2015

Otman Charaf (University of Alabama)