#### Discovery Physics at FAIR Scientific and Technological Innovation Opportunities for South Africa





Google Earth 7.12.2013

100

# **FAIR Civil Construction**





FAIR scientific opportunities: highest Ionbeam Intensity worldwide

- + FAIR under construction as an International Facility with 10 Ownerstates
- Construction Budget: 1600+Million Euro Invest mostly in kindOperating Budget:160+Million Euro annually ... + detectors (collaborations)
- Four high intensity driver accelerators: Heavy Ion Linac UNILAC 20AMeV ⇒ 5 GeV Proton / 2 AGeV Uranium Synchrotron SIS 18 in operation at GSI ⇒ 30 GeV Proton / 10 AGeV Uranium Synchrotron SIS 100 under construction ⇒ 90 GeV Proton / 35 AGeV Uranium Synchrotron SIS 300 (still to be funded...)

#### **Primary Proton and Ion beams on 4 primary targets**

- + secondary beams: rare isotopes & Antiprotons in 4 Storage Rings HESR, CR, ESR
- + APPA: Atomic, applied, plasma, bio, material-science and FLAIR @ Cryring
- + NuSTAR: RIB, nuclear Astro, nuclear structure, multi-Hypernuclei
- + CBM: Relativistic Heavy Ions super- Dense Baryonic matter
- + PANDA: Massive Charmonium, X, Y, Z, Glueballs & Hybrids
- + Beauty-Baryon-AntiBaryon pairs in a pBar-p Collider option at HESR ...

#### FAIR Accelerator Challenges

#### Compact & cost effective accelerators Fast cycling superconducting magnets dB/dt ~ 4T/s



Fast acceleration High gradient, variable frequency Ferrite & MA loaded cavities



#### XHV @ high beam intensities Extremely high vacuum ~10<sup>-13</sup> mbar



Precision beams Electron & stochastic cooling



Horst Stoecker GSI & FIAS

# SIS100 FOS Dipole-Tests

- Cycle tests:
  - $B(Injection) \rightarrow B(max.) \rightarrow B(Injection)$
  - Period T = 1.1 s achieved → minimum cycle time still to be checked
- Magnetic field: DC measured
  - Central field follows specific
  - Field higher-order componer measured
- Next activities:
  - Interpretation of measurem results
  - Measurements at cryogenic temperatures
  - Optimisation of yoke ends





# SIS100 Quadrupole Module

• Module with QP, chrom. SP, BPM

Doublet with Cryo-Catcher module





Vacuum shell

Functional elements installed in common girder

#### Fully integrated QP-Doublet: Cryostat with telescopic compens

### Magnet testing facilities GSI / Dubna / CERN

- Testing of SIS100 Dipoles and prototypes at GSI
- Testing of SIS100 Quadrupole units at Dubna
- Testing od Super-FRS magnets at CERM<sup>Id box</sup>

New series test facility at GSI → 2kW cryo plant in new building



Preparation at JINR/DUBNA 1600 m<sup>2</sup> main hall 700 m<sup>2</sup> auxiliary facilities

# SIS100 dipole series test facility

Test station at GSI operating

SH5 June

2014

- Cryogenic infrastructure procurement ongoing
- Power converters (2 pcs, 20 kA, 22/66 V) ordered
- HTS current leads: based on already tested ones
- Quench detection system ordered (1. test setup)



First delivery may 2014 Installation commissioning August 2014

## Status HEBT

## • Magnets:

- Almost all HEBT Magnets (338/356) → Efremov Institute Russia
- Magnets similar to CR Magnets (2+5)
- Budker institute
- Super-FRS Quadrupoles (9) → GSI in-kind
- HEBT magnets distributed among the partners
- Diagnostics:
- detailed, technical drawing and specification of all standard diagnostic and BPM chamber
- pre-series production of first diagnostic chamb
- detailed, technical drawing of FAIR standard pneumatic drive
- pre-series production of
- first FAIR pneumatic drive



## Collector Ring (CR) -> pBars and RIBs

- The TDR CR has been updated and approved in February 2014.
- IKRB assigns a major part of the CR components (63 %) to Budker (BINP)
- Contract on transfer of the CR system responsibility to BINP
- BINP and GSI make good progress in design and procurement of CR components
- RF-systems and stochastic cooling are GSI contribution



#### p-Linac DTL overview



#### Parallel Operation of Accelerator Complex



#### FAIR



Horst Stoecker GSI & FIAS

FAIR's Charm and Beauty

#### **International Cooperation : 2400 FAIR users at 100+ Labs**

... from more than 50+ countries, numbers rising -World's largest fundamental science project of this decade ...



Germany: 4 Helmholtz centers Juelich, HZDR, KIT, GSI with HIJ, HIM, HiC4FAIR, HA Cosmic Matter in the Laboratory/EMMI, University groups, Max Planck Kernphys Stoecker GSI & FIAS FAIR's Charm and Beauty 17





FLAIR!

Courtesy Jim Ritman, FZ Juelich

#### Particle production in pp collisions

# Formation:





All  $J^{PC}$  allowed for  $(q\bar{q})$  accessible in  $p\bar{p}$ 





Only J<sup>PC</sup> = 1<sup>--</sup> allowed in e<sup>+</sup>e<sup>-</sup> (to 1st order)

Horst Stoecker GSI & FIAS

FAIR's Charm and Beauty

Beyond standard quark configurations

• QCD allows much more than what we have observed:



#### **Exotica**



Horst Stoecker GSI & FIAS

hybrid: with gluon excitation

glueball: pure gluon state

4 quark state: compact 4-quark state

#### hadronic molecule: bound state of two mesons

FAIR's Charm and Beauty Courtesy C. Hanhart



Mesons

may have J<sup>PC</sup>
 not allowed
 for qq

#### **Search for Heavy Glueballs**



Morningstar & Peardon, PRD60(1999)34509 Morningstar & Peardon, PRD56(1997)4043

Charmed glueballs

- flavour blind decays
  - charmed final states
- only a few charmed mesons around 3 - 4 MeV/c<sup>2</sup>
  - less mixing
- Exotic glueballs (oddballs), no mixing!
  - m(2<sup>+-</sup>) = 4140(50)(200) MeV
  - $m(0^{+-}) = 4740(70)(230) \text{ MeV}$
  - decay modes φφ, φη, J/ψη, J/ψφ
  - Narrow widths predicted

#### The PANDA Spectrometer at FAIR





**HESR** in **pBar-p collider** mode (R. Maier, FZ Juelich) : 2. electron co L= 3x30 with sqrt(s) = 30 GeV : **BEAUTY** baryon pairs +/- bcs. Beauty xyz- mesons Xb, Yb, Zb with M >12 GeV

#### HESR with $p-\overline{p}$ option (sketch)



Beauty baryon pairs and multi-Charm-nuclei in Panda @ pBar-p collider: analogous to Hypernuclei ?!





## From Basic Science to

#### Atomic Physics, Plasma Physics, Applied Sciences



lications

AND



Courtesy of Reinhold Schuch

Physics Department, Stockholm University, Sweden





## **APPA: Sophisticated & Versatile** Instrumentation

#### **Observables**: Photons, electrons, positrons, ions



Traps



X-ray optics, channel cut crystalls Laser systems

# SPARC@FAIR: Storage and Trapping







#### at APPA cave: excitation of 1s-2p in U<sup>91+</sup> possible for first time



















# 65 mm

Ne<sup>10+</sup> 300 MeV/u; Kr crystal



#### Interaction of ions and photons with plasmas Equation of state, phase transitions, transport phenomena Matter under high pressure

#### **Coupling of intense light with matter**

Warm Dense Matter

oT~0.2-10 eV  $0 \rho \sim solid density$ o P ~ kbar, Mbar

O large volume of sample (mm<sup>3</sup>) o fairly uniform physical conditions o high entropy @ high densities o high rep. rate and reproducibility o any target material

**Compared to GSI, FAIR will provide a specific intensity** and energy deposition increase by a factor of 100 !





Particles / cm<sup>-3</sup>

### Ions at GSI & FAIR : challenges and strategies

#### **MML Facilities at GSI**

ion trap facility HITRAP



- GSI: Serving the user communities
  UNILAC, PHELIX, EBIT, and CRYRING in operation -> FLAIR
- R&D beam experiments for FAIR

**M-branch UNILAC** 

building novel instrumentation for FAIR

## Matter under extreme conditions





- Simulating geological processes in the inner Earth
- Ion-beam stabilized high pressure phases

During irradiation T and p Li the inner earth is applied to minerals.

+ tracks induced by natural fission fragments as in the minerals of the

inner earth can be simulated.

# nature

mature materials LETTER

temperature

irradiation

Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions

pressure

Maik Lang<sup>1</sup>, Fuxiang Zhang<sup>1</sup>, Jiaming Zhang<sup>1</sup>, Jianwei Wang<sup>1</sup>, Beatrice Schuster<sup>2</sup>, Christina Trautmann<sup>2</sup>, Reinhard Neumann<sup>2</sup>, Udo Becker<sup>1</sup> and Rodney C. Ewing<sup>1\*</sup>
## **PRIOR – Proton Microscope for FAIR Pump-Probe:** Ion and Proton beams

the worldwide unique high energy proton microscopy facility PRIOR (10 µm / 10 ns resolution, sub-percent density reconstruction) will be integrated into the HEDgeHOB beam line

LANL

using high-energy (5 – 10 GeV), high intensity (5 $\cdot$ 10<sup>12</sup>) SIS-100 proton beams



Material spall and fragmentation at micrometer level

- joint multidisciplinary research of HEDgeHOB and BIOMAT during FAIR MSV:
  - materials at extreme dynamic environments generated by external drivers (plasma physics and materials research)
  - PaNTERA (Proton therapy and radiography) project (biophysics)
- PRIOR setup beam time commissioning at GSI: 2013/2014



# Particle Therapy at FAIR

- New project (PANThERA) within APPA to exploit the PRIOR setup for Diagnostics and Therapy
- Relativistic protons (4.5 GeV) for image-guided, high-resolution, realtime, stereotactic radiosurgery - proton theragnostics, PRIOR setup
- Images of an antropomorphic phantom and a mouse recorded at LANL (800 MeV)
- Investigating also to use high-energy antiprotons for Theragnostics (together with FLAIR)



**BIO\*MA** 

## Atomic & Fundamental

## Spare Particles Research Collaboration

QED in the non-perturbative regime Correlated multi-body dynamics for atoms and ions Precision determination of fundamental constants Influence of atomic structure on nuclear decay properties Fundamental physics and antimatter

acility for Low-energy Antig



## SPARC Challenges & Opportunities Spare

"Heisenbergs dream" shot out the nucleus, let electrons explode !

# World-wide unique for strong interaction with vacuum





Multiple Pair Production
Recombination with the Vacuum

Explore correlated electron dynamics

- sub-attosecond time-scale
- not accessible by other means

#### CYRING@ESR

A collaboration of FAIR@GSI, AP@GSI, GA@GSI, Stockholm Univ., KVI Groningen, Cracow Univ., and the SPARC Collaboration FAIR Research & Development FAIR type control system / Detectors and diagnostic systems / Training of operators on FAIR type system

Scientific Opportunities: Heavy, highly-

charged ions – bridge the energy gap between the ESR (> 4 MeV/u) and HITRAP (<10 keV/u)



- Cave reconstruction close to completion
- Component preparation ongoing



### **Exp. With Low-Energy pBars**

Facility for Low-energy Antiproton and Ion Research

- Spectroscopy for tests of CPT and QED
  - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions
  - Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions



Sub-Femtosecond Correlated Dynamics Probed with Antiprotons



#### Antiprotons as hadronic probes

- X-rays of light antiprotonic atoms: low-energy QCD
- X-rays of neutron-rich nuclei: nuclear structure (halo)
- Antineutron interaction
- Medical applications: tumor therapy
- Material Science





FLAIR collaboration uses low-E antiprotons at CERN-AD to

test decelerator schemes- initial experiments of FLAIR physics program







#### Super-FRS



#### SuperFRS-facility and NuSTAR programme



## The NUSTAR collaboration

> 800 registered members38 countries180 institutes



#### The NUSTAR experiment facility at FAIR







| Super-<br>FRS    | Isotope identification and high-resolution spectrometer experiments |  |
|------------------|---------------------------------------------------------------------|--|
| DESPEC           | $\gamma$ -, $\beta$ -, $\alpha$ -, p-, n-decay spectroscopy         |  |
| HISPEC           | in-beam gamma-spectroscopy at low and intermediate energy           |  |
| ILIMA            | masses and lifetimes of nuclei in ground and isomeric states        |  |
| LASPEC           | Laser spectroscopy                                                  |  |
| MATS             | in-trap mass measurements and decay studies                         |  |
| R <sup>3</sup> B | kinematically complete reactions at high beam energy                |  |
| ELISE            | elastic, inelastic, and quasi-free e-A scattering                   |  |







#### CBM: The Compressed Baryonic Matter Experiment





Science case

Status experiment preparation

Courtesy of Peter Senger (GSI)

#### From NuSTAR to CBM : Hypernuclei and Neutron Stars



- Kaon condensate, hyperons, strange quark matter
- *Single* and *double* hypernuclei in the laboratory:

- J.M. Lattimer and M. Prakash, "The Physics of Neutron Stars", Science 304 J. Schaffner and I. Mishustin, *Phys. Rev. C* 5
- Hyperon-rich matter in neutron stars
- study the strange sector of the baryon-baryon interaction
- provide info on EOS of neutron stars

FAIR's Charm and Beauty Horst Stoecker GSI & FIAS



#### Fundamental Questions of (QCD-) Physics

- > What is the structure of compact stars?
- What is the origin of the mass of the hadrons which determine the visible mass of the universe?
- Why do we not observe individual quarks, the elementary building blocks of matter?
- What are the properties and the degrees-of-freedom of nuclear matter under extreme conditions (high temperature and/or high density)?



Outer Crust Outer

Quark Star





#### **CBM: The Compressed Baryonic Matter Experiment**



### Exploring the QCD phase diagram



**Directed flow**: px/pt = v1

- First form of flow predicted (one-fluid hydro, H.St. & W. Greiner)
- and observed at LB L (Plastic Ball, Streamer Chamber ) in 1980's
- later less focus on v1 at higher energies, where
  - signal is smaller than v2
  - v2 stole the limelight
  - 2D models cannot address this explicitly 3-D phenomenon







First-order anisotropy imprints itself on momentum space in first instants

• Promising soft-spot probe, due to rapid dynamics

**Hor Longestanding probe for 1<sup>st</sup>-order transition neglected in v2 @RH** 

#### P. Sorensen's Optimistic point of view



 $dv_1/dy$  for net protons very well may be the smoking gun we've been looking for. It deserves more theoretical attention!

### **CBM : Big Bang and Neutron Star matter**





deconfinement
phase transition
Quarks=> Proton

 Equation-ofstate at neutron star densities,
Multi-Strange Quarks

in-medium
properties of
hadrons, hadron
mass generation

#### **Highest Proton Densities in the Universe !**

Flor RtsSC backera 65 B&a FutAS

### Hadrons in nuclear- / Neutronstar Matter

- Partial restoration of chiral symmetry in nuclear matter
  - Light quarks sensitive to quark condensate
- (c c) states sensitive to gluon condensate
  - Small (5-10 MeV/c<sup>2</sup>) in medium modifications for low-lying (c  $\rm \bar{c})~(J/\psi,~\eta_c)$
  - Significant mass shifts expected for excited states: 40, 100, 140 MeV/c<sup>2</sup> for  $\chi_{cJ}$ ,  $\psi'$ ,  $\psi(3770)$  resp.
- D mesons QCD analogue of Hatom
  - Chiral symmetry to be studied on a single light quark
  - Theoretical calculations disagree in size and sign of mass shift (50 MeV/c<sup>2</sup> attractive – 160 MeV/c<sup>2</sup> repulsive)





#### From Hades to CBM

#### CBM

**Highest Baryon densities** in the universe - probing the center of

neutron stars



HADES high multiplicity upgrade Au+Au @ SIS18 Ag+Ag @ SI S100

#### **CBM** = Look deep into neutron stars !

High density matter - EoS: collective explosive flow of protons Quark-Hadron phase boundary @ high baryon density  $\rho_{\rm B}$ :

- multi-strange + charm production
- QCD critical point

Chiral symmetry at high  $\rho_B$ : open charm, J/Psi, dilepton production



### Hypernuclei and metastable multistrange matter



FAIR's Charm and Beauty

### Experimental challenge: 10000000x STAR-yields!!



#### Experiments on superdense nuclear matter

| Experiment   | Energy range                             | Reaction rates                                                                          |
|--------------|------------------------------------------|-----------------------------------------------------------------------------------------|
|              | (Au/Pb beams)                            | Hz                                                                                      |
| STAR@RHIC    | $\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$    | 1 – 800                                                                                 |
| BNL          |                                          | (limitation by luminosity)                                                              |
| NA61@SPS     | E <sub>kin</sub> = 20 – 160 A GeV        | 80                                                                                      |
| CERN         | $\sqrt{s_{NN}}$ = 6.4 – 17.4 GeV         | (limitation by detector)                                                                |
| MPD@NICA     | $\sqrt{s_{NN}} = 4.0 - 11.0 \text{ GeV}$ | ~1000                                                                                   |
| Dubna        |                                          | (design luminosity of 10 <sup>27</sup> cm <sup>-2</sup> s <sup>-1</sup> for heavy ions) |
| HADES@SIS100 | 1.5 A GeV Au+Au                          | 5·10 <sup>4</sup>                                                                       |
|              | 8 A GeV Ni+Ni                            |                                                                                         |
| CBM@FAIR     | E <sub>kin</sub> = 2.0 – 35 A GeV        | 10 <sup>5</sup> – 10 <sup>7</sup>                                                       |
| Darmstadt    | $\sqrt{s_{NN}} = 2.7 - 8.3 \text{ GeV}$  | (limitation by detector)                                                                |

### CBM technological challenges

Central Au+Au collision at 25 AGeV (UrOMD + GEANT4): 160 p 400  $\pi^+$  44 K<sup>+</sup> 13 K

10<sup>5</sup> - 10<sup>7</sup> Au+Au reactions/sec determination of (displaced) vertices ( $\sigma \approx 50 \ \mu m$ ) identification of leptons and hadrons Fast and radiation hard detectors free-streaming readout electronics high speed data acquisition and high performance computer farm for online event selection **4-D event reconstruction** 

#### CBM technical developments

#### SC Magnet: JINR Dubna



Micro-Vertex Detector: Frankfurt, Strasbourg



MRPC ToF Wall: Beijing, Bucharest, Darmstadt, Frankfurt, Hefei, Heidelberg, Moscow, Rossendorf, Wuhan, Zagreb



Transition Radiation Detector: Bucharest, Dubna, Frankfurt, Heidelberg, Münster



RICH Detector: Darmstadt, Giessen, Pusan, St. Petersburg, Wuppertal



Forward calorimeter: Moscow, Prague, Rez



#### Silicon Tracking System: Darmstadt, Dubna, Krakow, Kiev, Kharkov, Moscow, St. Petersburg, Tübingen





Muon detector: Kolkata + 13 Indian Inst., Gatchina, Dubna



DAQ and online event selection: Darmstadt, Frankfurt, Heidelberg, Kharagpur, Warsaw





82

#### CBM: Dileptons from central Au+Au 25 AGeV : SiS 300 !!

Micro-Vertex detector (MAPS) + Silicon-Microstrip System ...with RICH + TRD












## Extreme Computing Challenges FAIR Tier 0 GreenCube Data Center



\*\*\*No. 1\*\*\* Green500\*\*\*: Nov. 2014

5.27 Gflops/Watt - World Record

## L-CSC GSI Darmstadt PUE <1.07

**powerefficient Supercomputer** AMD FirePro GPU, Intel Xeon CPU

Tier0 data center: FAIR **GreenCube** Helmholtz funding 770 Racks 2.2m

- 12 M€building cost
- 7 M€initial HPC installation
- Completion of CC in Q4/2015
- Max cooling power 12 MW
- Fully redundand (N+1)

3. June 20 4

T. Kollegger, 13. June

## FAIR Collaborations want more South Africans ! Versatile Science and Technology Opportunities



## **Detector funding** ... by Collaboration

