

Direct Photon and High-p_T Particle Production with ALICE

Kruger Park Workshop, December 1-5, 2014

Klaus Reygers, for the ALICE collaboration

Physikalisches Institut University of Heidelberg, Germany

The Objective of Ultra-Relativistic Heavy-Ion Physics: Study of Emergent Properties of QCD

 It is a hard problem to determine the properties of water and its phases (ice, water, steam) from the known properties of a water molecule

source: de.wikipedia.org

 Ultra-relativistic heavy-ion physics: Study of emergent properties of QCD (condensed-matter aspects of QCD)

"More is different"

Philip W. Anderson, Science, 177, 1972, S. 393

QGP Space-time Evolution Successfully Modeled with Hydrodynamics

^{*} conjectured lower bound from string theory: $\eta/s|_{min} = 1/4\pi$ Phys.Rev.Lett. 94 (2005) 111601

- Gluons liberated from the nuclear wave function during collision
- Rapid thermalization:
 QGP created at ~ I fm/c
- Longitudinal and transverse expansion describable by almost ideal relativistic hydrodynamics $(\eta/s \approx 0)^*$
- Transition QGP \rightarrow hadrons at $T_c = 150 - 160 \text{ MeV}$
- Ratio of different particle species
- fixed at $T_{ch} \approx T_c$ ("chemical freeze-out")
 - Shape of momentum spectra fixed at T_{fo} ~ 100 MeV ("kinetic freeze-out")

The Role of Direct Photons and High- p_T Particles: Access to the Early Stage of the Medium Evolution

- High p_T particle production and jets
 - Energy loss of quarks and gluons in the medium characterizes the medium
 - Results in suppressed particle production at high p_T
- Direct Photons
 - Escape the medium unscathed (mean free path $\lambda \approx 500$ fm)
 - High p_T (> ~ 6 GeV/c): Absence of suppression for prompt (pQCD) photons
 → Confirms parton energy loss picture
 - ▶ Low p_T (< ~ 4 GeV/c)</p>
 - Contributions from all stages (unlike hadrons)
 - Test of space-time evolution
 - Access to initial temperature of the QGP (?) [via comparison to hydro models]

Temperature Measurements via Photons: The Sun ...

Spectral irradiance, W/(m² nm) 1.4 -1.2 -T = 5777 K 1.0 -0.8 -0.6 -0.4 -0.2 -0.0 500 1000 1500 0 Wavelength, nm

source: http://en.wikipedia.org

source: http://en.wikipedia.org

... and the QGP (analog, but slightly different)

- Photons produced in scatterings of quark and gluons in thermal equilibrium
- Photons not in thermal equilibrium, but energy spectrum reflects QGP temperature

A Complication for the Temperature Measurement: Blueshift due to Radial Flow

$$E_{\gamma}rac{{
m d}^3N_{\gamma}}{{
m d}^3p_{\gamma}}\propto e^{-E_{\gamma}/{T_{
m eff}}}$$

$$T_{
m eff} = \sqrt{rac{1+eta_{
m flow}}{1-eta_{
m flow}}} imes T$$

- Large blueshift at late times when $T \approx 150 200 \text{ MeV}$
- Extraction of initial temperature from data requires comparison to (hydro) model

Parton Energy Loss

Collisional energy loss:

- Elastic scattering with medium constituents
- Medium often characterized by

 $\hat{e} = dE_{\rm coll}/dL$

Radiative energy loss:

- Inelastic scattering with medium (induced bremsstrahlung)
- Expected to be dominant
- Medium often characterized by

$$\hat{q} = \rho \int dq_T^2 q_T^2 \frac{d\sigma}{dq_T^2} = \rho \sigma \langle k_T^2 \rangle = \frac{\mu^2}{\lambda_{\rm mfp}}$$

More on the Connection between Parton Energy Loss and Thermal Direct Photons

Radiative energy loss in a static medium (BDMPS model)

$$\Delta E \propto \alpha_s C_F \hat{q} L^2$$
, $C_F = \begin{cases} 3 & \text{for gluons} \\ 4/3 & \text{for quarks} \end{cases}$

- However, rapid medium expansion in heavy-ion collisions
 - Expected temperature dependence: $\hat{q} \propto T^3$
 - In some models calculated from other hydro quantities, e.g.: $\hat{q} \propto arepsilon^{3/4}$
- Connection to thermal direct photons:
 - Initial temperature and consistent description of medium evolution essential for extracting medium properties
 - Hydro fitted to spectra and v_2 : need photons to check space-time evolution
- Potential to characterize medium as strongly or weakly coupled:

$$\frac{\eta}{s} = K \frac{T^3}{\hat{q}}$$

Measure both sides independently to determine *K*

Majumder, Müller, Wang, PRL, 99 (2007) 192301

I. Direct Photons

Measuring Photons via Conversions

ca. 1950

today

Excellent photon momentum resolution and rather pure photon samples at the expense of loss in statistics

How to Measure Direct Photons?

$$\gamma_{\text{direct}} := \gamma_{\text{inclusive}} - \gamma_{\text{decay}} = (1 - \frac{1}{R}) \gamma_{\text{inclusive}}$$

with
$$R = \frac{(\gamma_{\text{inclusive}}/\pi^0)_{\text{meas}}}{(\gamma_{\text{decay}}/\pi^0)_{\text{calc}}}$$

Calculated decay photon cocktail (π^0 , η , ω , ...), π^0 measured, other hadrons from m_T scaling so far

Decay Photon Cocktail from Measured π^0 Spectrum

- π^0 spectrum measured, heavier mesons from m_T scaling
- Only π^0 , η , ω relevant, the rest is negligible

No Significant Direct-Photon Excess in Peripheral Pb-Pb

No significant direct-photon excess in peripheral Pb-Pb (same holds for pp at 7 TeV)

Direct-photon Excess in Central Pb-Pb Collisions

15 - 20% direct-photon excess for $I < p_T < 2$ GeV/c where contribution from pQCD photons is small

Comparison of the Direct Photon Excess in 0-40% most central Pb-Pb collisions with Hydro Models

- Direct photon excess appears to be larger than expected in hydrodynamic model
- Are we missing an important photon source in these models?

Further Information from Direct Photon Elliptic Flow

Quantifying elliptic Flow: Fourier Coefficient v₂

State of the art for hadrons: higher harmonics up to n = 6:

$$\mathsf{E}\frac{\mathsf{d}^3 N}{\mathsf{d}^3 p} = \frac{1}{2\pi} \frac{\mathsf{d}^2 N}{p_T \mathsf{d} p_T \mathsf{d} y} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\varphi - \Psi_n)\right] \right)$$

How to Measure the Direct-Photon v_2 ?

- Reaction plane (RP) from charged particles in forward direction (2.8 < η < 5.6 [VZEROA], -3.7 < η < -1,7 [VZEROC])
- Inclusive photons: $v_2^{\gamma,\text{incl}} = \frac{\langle \cos(2(\varphi \Psi_2^{\text{RP}})) \rangle}{C}$, C = resolution correction
- Decay photon v₂ from cocktail calculation based on measured pion v₂ (+ higher mass hadrons)
- Inclusive photon v_2 is weighted average of decay photon and direct photon v_2 . Thus one can calculate the direct-photon v_2 as

$$v_2^{\gamma, ext{direct}} = rac{R \, v_2^{\gamma, ext{incl}} - v_2^{\gamma, ext{decay}}}{R-1}$$
 with $R = rac{\gamma_{ ext{incl}}}{\gamma_{ ext{decay}}} = 1 + rac{\gamma_{ ext{direct}}}{\gamma_{ ext{decay}}}$

21

Measured Inclusive Photon and Calculated Decay Photon v₂

- v₂(incl) < v₂(decay) for p_T > 3 GeV/c
 - expected from v₂ = 0 for prompt photons
- v₂(incl) ≈ v₂(decay) for p_T < 3 GeV/c:</p>
 - If there is a large direct photon component its v₂ must be very similar to the decay photon v₂
 - v₂(incl) described by models with small R_Y predicted by the same models
 - Uncertainties of v₂(dir) strongly depend on uncertainties of photon excess R_Y

Recap: What to expect for the Direct Photon v_2 ?

- Large inverse slope parameter: $T_{slope} \approx 304 \pm 51^{stat+syst} MeV$ (>> $T_c = 150 - 160 MeV$)
- Could indicate that direct photons mostly come from early hot QGP phase
- Expect then small elliptic flow signal ($v_2 \approx 3\%$ or so at maximum) as collective flow needs time to build up

Direct Photon Elliptic Flow Appears to be Larger than Expected in Hydro Models

- Maybe many direct photons from late stage with T ≈ 150 MeV?
- Then large inverse slope parameter due to Doppler blueshift with typical hadronic flow velocity $\beta_{flow} \approx 0.6 c$?
- However, current systematic uncertainties are sizable so that there is no big puzzle looking at the ALICE data alone

Workshop on Discovery Physics at the LHC | December 5, 2014 | Klaus Reygers 24

The Puzzle Actually Started at RHIC: Large Inverse Slope Parameter ...

PRL, 104, 132301 (2010); PRC, 81, 034911 (2010) and also arXiv:1405.3940

- Exponential shape of photon excess (consistent with thermal)
 - Inverse slope (for 0-20%):
 221 ± 19^{stat} ± 19^{syst} MeV
 - *T_i* from hydro: 300 ... 600 MeV
- Hydro models below data

... and Large Direct Photon v_2 for $p_T < 3$ GeV/c

- PHENIX: Data a challenge to theory
- Charles Gale (theorist): "Theory a challenge to the data"
- Direct photon puzzle: Large direct photon v₂ for
 I < p_T < 3 GeV/c challenges
 - the standard model of the space-time evolution of a heavy-ion collision
 - and/or the currently used photon emission rates for the QGP and the hadron gas

Testing "Exotic" Photon Sources By Measuring the Photon v₃

- Photon production resulting from large initial B field?
- Could explain v₂
- Expect small v₃ in these models
- Inclusive photon v₃ measured, not yet conclusive

Intermediate Summary: The Direct Photon Puzzle

- The two parts of the puzzle
 - Direct photon yields at low p_T (I < p_T < 3 GeV/c) not described by hydro models
 - Large direct photon v₂, similar in magnitude to pion v₂, not described by hydro models
- A challenge to the "standard model" of the evolution of heavy-ion collisions
- What are we missing?
 - Maybe many more photons from late stage close to T_c and hadron gas phase (need factors 10 20 increase in HG rate!)
 - Maybe just bremsstrahlung from the HG?
 - Exotic new photon source, e.g., related to large initial B field?
 - Large initial flow before hydro evolution starts?
 - Glasma photons, i.e., large photon production in very early gluon-rich phase?

• • • •

II. High p_T Particle Production and Jets

Hadron Suppression in Pb-Pb: An Effect Related to the Medium

$$R_{AB} = \frac{dN/dp_{T}|_{A+B}}{\langle T_{AB} \rangle \times d\sigma_{inv}/dp_{T}|_{p+p}}, \ \langle T_{AB} \rangle = \frac{N_{coll}}{\sigma_{inel}^{NN}}$$

- Hadron suppression in Pb-Pb w.r.t. to scaling expected for hard processes
- An effect of the medium
 - No suppression in p-Pb
 - No suppression of color neutral probes in Pb-Pb

Jet Transport Parameter from Data

- Fit of various models to $R_{AA}(p_T)$ at RHIC and the LHC
- Jet transport parameter (for $E_{parton} = 10$ GeV, QGP thermalization at $\tau_0 = 0.6$ fm/c):

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases}$$
 GeV²/fm at T=370 MeV,
T=470 MeV,

Jet Coll., Phys.Rev. C90 (2014) 014909

Result relies on standard hydro description of the medium evolution

Energy Dependence of the Hadron Suppression

- Suppression factor depends on parton energy loss and on steepness of the initial parton spectrum
 - More steeply falling spectrum gives larger suppression for same ΔE
- Stronger suppression with increasing \sqrt{s} :
 - Increase of medium density dominates over effect of flatter initial parton spectra

p/π and K/π Ratios vs. p_T in pp and Pb-Pb

Strong increase of p/ π ratio at $p_T \approx 3$ GeV/c in Pb-Pb: due to radial flow alone?

π, **K**, **p** *R*_{AA}

ALICE, PLB 736 (2014) 196

π , K, p R_{AA} similar at high p_T : Leading-parton energy loss followed by fragmentation in QCD vacuum (as in pp) for $p_{T,hadron} > 8$ GeV/c?

Quark Mass Dependence of the Energy Loss: D Mesons vs. Pions

* e.g., Djordjevic, PLB 734 (2014) 286, T. Renk, PRC 89 (2014) 054906

- Heavy quarks: Gluon radiation suppressed for angles θ ≤ m_{quark}/E_{quark}: "dead cone effect"
- $\Delta E_{gluon} > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Pions for p_T < 40 GeV/c mostly from gluon fragmentation
- Different shape of initial parton *p*T spectra, different frag. functions for D mesons and pions
- In spite of all that:
 Pion and D meson R_{AA}(p_T) very similar (contrary to naïve expectation)
- However, reproduced by parton energy loss models*

Quark Mass Dependence of the Energy Loss: D Mesons vs. B Mesons

- B mesons energy loss probed indirectly via non-prompt J/ Ψ (B → J/ Ψ)
- p_T ranges chosen so that $\langle p_T \rangle_D \approx \langle p_T \rangle_B \approx 10 \text{ GeV/}c$
- Less suppression of non-prompt
 J/Ψ compared to D mesons
- Reproduced by models which have the dead cone effect built in (WHDG, Djordjevic)
- Evidence for smaller energy loss for b quarks due to the dead cone effect

Studying Parton Energy Loss with Jets

Why jets?

- Leading particle energy loss is not the full story (information reduction)
- A tool to study the modification of the parton shower evolution due to the medium through jet shapes, frag. functions, etc
- Jets reconstructed with jet resolution parameter R = 0.2 and 0.3 are suppressed

ALI-PREL-84783

Control Experiment: No Jet Suppression in p-Pb collisions (Charged Jets)

Similar conclusions for jets with $R = 0.2 \dots 0.4$ and particle spectra

Studying the Lateral Jet Profile: Ratio of Jet Cross section for *R* = 0.2 and 0.3 (Charged Jets)

A First Look at Jet Chemistry with Two-Particle $\Delta \Phi - \Delta \eta$ Correlations

Nucl.Phys.A910-911 (2013) 306 Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, 0-10% central

ALI-PREL-15474

Particle composition in jets appears to be unmodified in Pb-Pb w.r.t. pp

ALICE

Conclusions

- Direct photons
 - Low p_T (p_T < 3 GeV/c) direct-photon excess not well described by standard hydro models
 - Large direct photon v_2 (similar to pions) at low p_T not well described
 - Qualitatively similar to findings at RHIC (currently larger uncertainties at the LHC)
 - "Direct photon puzzle" (mostly at RHIC with current uncertainties)
- High p_T particle production and jets
 - High p_T particle and jet suppression due to medium formed in Pb-Pb collisions
 - pQCD elastic + radiative energy loss models appear to be consistent with the data (e.g., less suppression for b quarks)

Extra Slides

Jet R_{AA} (R = 0.2) Described by In-Medium Shower Monte Carlo Codes

Current state-of-the-art: Monte Carlo generators with description of in-medium shower evolution with (e.g. JEWEL, YaYEM, Q- PYTHIA, Q-HERWIG, MARTINI)

Azimuthal Anisotropy v_2 at High p_T (above ~ 8 GeV/c) Believed to be due to Parton Energy Loss

(ALICE), Phys. Lett. B719, (2013) 18