The Energy Momentum Tensor associated with Hard Parton production in Finite Time

Ben Meiring
\& W A Horowitz
University of Cape Town
mrnben002@myuct.ac.za
1-5 Dec, 2014

SA CERN

What is the Quark Gluon Plasma?

- A new Fundamental state of matter, that we don't yet fully understand
- Dominated the universe at $\sim 10^{-34}$ seconds after the big bang

What is the Quark Gluon Plasma?

- A new Fundamental state of matter, that we don't yet fully understand
- Dominated the universe at $\sim 10^{-34}$ seconds after the big bang

What is the Quark Gluon Plasma?

- A new Fundamental state of matter, that we don't yet fully understand
- Dominated the universe at $\sim 10^{-34}$ seconds after the big bang

How do we study the QGP?

Design an experiment to probe this Jello.

How do we study the QGP?

Design an experiment to probe this Jello.

How do we study the QGP?

Design an experiment to probe this Jello.

How do we study the QGP?

Design an experiment to probe this Jello.

How do we study the QGP?

Figure: Stopping Distance as a function of radial u_{c}. R. Morad \& W A Horowitz (1409.7545)

Toy Problem: Find the $T_{\mu \nu}$ of a "gluon" emitted from a static "quark" in scalar QCD

Toy Problem: Find the $T_{\mu \nu}$ of a "gluon" emitted from a static "quark" in scalar QCD

$$
\langle\psi| T_{\mu \nu}(x)|\psi\rangle
$$

Toy Problem: Find the $T_{\mu \nu}$ of a "gluon" emitted

 from a static "quark" in scalar QCD$$
\langle\psi| T_{\mu \nu}(x)|\psi\rangle
$$

The expectation value of the Energy Momentum Tensor, given an initial state of a single ψ particle at $t=-\infty$.

Toy Problem: Find the $T_{\mu \nu}$ of a "gluon" emitted

 from a static "quark" in scalar QCD$$
\langle\psi| T_{\mu \nu}(x)|\psi\rangle
$$

The expectation value of the Energy Momentum Tensor, given an initial state of a single ψ particle at $t=-\infty$.

Figure: Schwinger-Keldysh Contour

Toy Problem: Find the $T_{\mu \nu}$ of a "gluon" emitted from a static "quark" in scalar QCD

$$
\langle\psi| T_{\mu \nu}(x)|\psi\rangle
$$

The expectation value of the Energy Momentum Tensor, given an initial state of a single ψ particle at $t=-\infty$.

Figure: Schwinger-Keldysh Contour

$$
\begin{aligned}
& T_{\mu \nu}=\partial_{\mu} \phi \partial_{\nu} \phi+\partial_{\mu} \psi \partial_{\nu} \psi-g_{\mu \nu} \mathcal{L} \\
& \mathcal{L}=\frac{1}{2}(\partial \psi)^{2}-\frac{1}{2} m_{\psi}^{2} \psi^{2}+\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m_{\phi}^{2} \phi^{2}-g \psi \phi \psi
\end{aligned}
$$

Complications: $\langle\psi| T_{\mu \nu}(x)|\psi\rangle$ is divergent (even after renormalization)

Complications: $\langle\psi| T_{\mu \nu}(x)|\psi\rangle$ is divergent (even after renormalization)

We need to include an improvement term

$$
\Theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{4} \frac{(n-2)}{(n-1)}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu}\right) \phi^{2}
$$

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)

Complications: $\langle\psi| T_{\mu \nu}(x)|\psi\rangle$ is divergent (even after renormalization)

We need to include an improvement term

$$
\Theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{4} \frac{(n-2)}{(n-1)}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu}\right) \phi^{2}
$$

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)
But we will use a sneaky trick

Complications: $\langle\psi| T_{\mu \nu}(x)|\psi\rangle$ is divergent (even after renormalization)

We need to include an improvement term

$$
\Theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{4} \frac{(n-2)}{(n-1)}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu}\right) \phi^{2}
$$

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)
But we will use a sneaky trick

$$
\begin{aligned}
\langle\phi(x) \phi(x)\rangle & =\langle\phi(x)\rangle^{2}+(\Delta \phi(x))^{2} \\
& \approx\langle\phi(x)\rangle^{2}
\end{aligned}
$$

Complications: $\langle\psi| T_{\mu \nu}(x)|\psi\rangle$ is divergent (even after renormalization)

We need to include an improvement term

$$
\Theta_{\mu \nu}=T_{\mu \nu}-\frac{1}{4} \frac{(n-2)}{(n-1)}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu}\right) \phi^{2}
$$

Callan, Coleman, Jackiw. ANNALS OF PHYSICS: 59, 42-73 (1970)
But we will use a sneaky trick

$$
\begin{aligned}
\langle\phi(x) \phi(x)\rangle & =\langle\phi(x)\rangle^{2}+(\Delta \phi(x))^{2} \\
& \approx\langle\phi(x)\rangle^{2}
\end{aligned}
$$

So we find $\langle\phi(x)\rangle$ and plug in

$$
\left\langle T_{\mu \nu}(x)\right\rangle \approx T_{\mu \nu}(\langle\phi(x)\rangle)
$$

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into $T_{\mu \nu}$

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into

 $T_{\mu \nu}$We found a general expression for $\langle\phi(x)\rangle$ with $H_{\text {int }}=g \psi \phi \psi$

Figure: Typical Diagrams for $\langle\phi(x)\rangle$ for \mid in $\rangle=|\psi \phi\rangle$

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into

 $T_{\mu \nu}$We found a general expression for $\langle\phi(x)\rangle$ with $H_{\text {int }}=g \psi \phi \psi$

Figure: Typical Diagrams for $\langle\phi(x)\rangle$ for \mid in $\rangle=|\psi \phi\rangle$

$$
\langle\phi(x)\rangle=-i g \int d^{4} z D_{R}(x-z)\langle\operatorname{in}| \psi(z) \psi(z)|\operatorname{in}\rangle
$$

(Generalizes for arbitrary $H_{\text {int }}$)

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into

 $T_{\mu \nu}$Choosing gaussian smeared wavepackets for the \mid in $\rangle=|\psi\rangle$ state with momentum width $1 / \alpha$. We take $m_{\psi} \rightarrow \infty$

$$
\langle\phi(x)\rangle=\frac{g}{m_{\psi}} \int d^{3} z\left(\frac{e^{-m_{\phi}|\vec{z}|}}{|\vec{z}|}\right) \frac{e^{-\frac{(\vec{x}-\vec{z})^{2}}{\alpha}}}{\sqrt{4 \pi \alpha}^{3}}
$$

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into

 $T_{\mu \nu}$Choosing gaussian smeared wavepackets for the \mid in $\rangle=|\psi\rangle$ state with momentum width $1 / \alpha$. We take $m_{\psi} \rightarrow \infty$

$$
\langle\phi(x)\rangle=\frac{g}{m_{\psi}} \int d^{3} z\left(\frac{e^{-m_{\phi}|\vec{z}|}}{|\vec{z}|}\right) \frac{e^{-\frac{(\vec{z}-\bar{z})^{2}}{\alpha}}}{\sqrt{4 \pi \alpha}^{3}}
$$

Solution to the Diffusion equation

$$
\partial_{\alpha}\langle\phi(x, \alpha)\rangle=\partial_{\bar{x}}^{2}\langle\phi(x, \alpha)\rangle
$$

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into $T_{\mu \nu}$

Choosing gaussian smeared wavepackets for the \mid in $\rangle=|\psi\rangle$ state with momentum width $1 / \alpha$. We take $m_{\psi} \rightarrow \infty$

$$
\langle\phi(x)\rangle=\frac{g}{m_{\psi}} \int d^{3} z\left(\frac{e^{-m_{\phi}|\vec{z}|}}{|\vec{z}|}\right) \frac{e^{-\frac{(\vec{z}-\vec{z})^{2}}{\alpha}}}{\sqrt{4 \pi \alpha}^{3}}
$$

Solution to the Diffusion equation

$$
\partial_{\alpha}\langle\phi(x, \alpha)\rangle=\partial_{\bar{x}}^{2}\langle\phi(x, \alpha)\rangle
$$

with initial condition
$\phi(x, 0)=\frac{e^{-m_{\phi}|\vec{x}|}}{|\vec{x}|}$.

Approximation: Calculate $\langle\phi(x)\rangle$ and Plug into $T_{\mu \nu}$

$$
\langle\phi(x)\rangle=\frac{g}{m_{\psi}} \int d^{3} z\left(\frac{e^{-m_{\phi}|\bar{z}|}}{|\bar{z}|}\right) \frac{e^{-\frac{(z-\bar{y})}{\alpha}}}{\sqrt{4 \pi \alpha^{2}}}
$$

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa - We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

```
- Specifying only the initial state gave us a Yukawa
```

- We want to refine our result by specifying the final state

Conditional Expectation Value

- Specifying only the initial state gave us a Yukawa
- We want to refine our result by specifying the final state

Conditional Expectation Value

We define the Conditional Expectation Value

Conditional Expectation Value

We define the Conditional Expectation Value

$$
\begin{aligned}
E[\hat{O}(x)|\mid \text { in }\rangle, \mid \text { out }\rangle] & \left.\left.=\sum_{i} O_{i} P\left(\left|q_{i}\right\rangle| | \text { in }\right\rangle, \mid \text { out }\right\rangle\right) \\
& =\frac{\left.\langle\text { in }| \hat{\Theta}_{M} \hat{O}(x) \hat{\Theta}_{M} \mid \text { in }\right\rangle}{\left.\langle\text { in }| \hat{\Theta}_{M} \mid \text { in }\right\rangle}
\end{aligned}
$$

where $\hat{\Theta}_{M}=\mid$ out $\rangle\langle$ out $|$ is the projection operator built from the out states.

Conditional Expectation Value

We define the Conditional Expectation Value

$$
\begin{aligned}
E[\hat{O}(x)|\mid \text { in }\rangle, \mid \text { out }\rangle] & \left.\left.=\sum_{i} O_{i} P\left(\left|q_{i}\right\rangle| | \text { in }\right\rangle, \mid \text { out }\right\rangle\right) \\
& =\frac{\left.\langle\text { in }| \hat{\Theta}_{M} \hat{O}(x) \hat{\Theta}_{M} \mid \text { in }\right\rangle}{\left.\langle\text { in }| \hat{\Theta}_{M} \mid \text { in }\right\rangle}
\end{aligned}
$$

where $\hat{\Theta}_{M}=\mid$ out $\rangle\langle$ out $|$ is the projection operator built from the out states.

This result is actually a generalization of Baye's Theorem.

Conclusion

Conclusion

- We've explored the possibility of finite time QFT calculations

Conclusion

- We've explored the possibility of finite time QFT calculations
- We found an expression for $T_{\mu \nu}$ through $\langle\phi(x)\rangle$

Conclusion

- We've explored the possibility of finite time QFT calculations
- We found an expression for $T_{\mu \nu}$ through $\langle\phi(x)\rangle$
- We defined a concept of Conditional Expectation Values in QFT

Conclusion

- We've explored the possibility of finite time QFT calculations
- We found an expression for $T_{\mu \nu}$ through $\langle\phi(x)\rangle$
- We defined a concept of Conditional Expectation Values in QFT

The End.

Back up Slides

Data for QGP

Figure: CMS Preliminary data for Jet R_{AA}. Taken from (1409.7545)

Conditional Expectation Value: Example

For \mid in $\rangle=|\psi\rangle, \mid$ out $\rangle=\left|\psi^{\prime}\right\rangle$ we find

$$
\left.E\left[\phi(x)||\psi\rangle,| \psi^{\prime}\right\rangle\right]=\left\langle\psi^{\prime}\right| \phi(x)\left|\psi^{\prime}\right\rangle+2 i \operatorname{lm}\left(\frac{\left\langle\psi^{\prime}\right| \phi(x)|\psi\rangle}{\left|\left\langle\psi^{\prime} \mid \psi\right\rangle\right|}\right)
$$

(At least to first order).

Conditional Expectation Value: Example

For \mid in $\rangle=|\psi\rangle$, |out $\rangle=\left|\psi^{\prime}\right\rangle$ we find

$$
\left.E\left[\phi(x)||\psi\rangle,| \psi^{\prime}\right\rangle\right]=\left\langle\psi^{\prime}\right| \phi(x)\left|\psi^{\prime}\right\rangle+2 i \operatorname{lm}\left(\frac{\left\langle\psi^{\prime}\right| \phi(x)|\psi\rangle}{\left|\left\langle\psi^{\prime} \mid \psi\right\rangle\right|}\right)
$$

(At least to first order).
This says that if $|\psi\rangle \neq\left|\psi^{\prime}\right\rangle$, the expectation of the field is complex.

