W-boson production measurements with ALICE in p-Pb collisions at 5.02 $\, {\rm TeV}$

Kgotlaesele Johnson Senosi for the ALICE collaboration

Department of Nuclear Physics iThemba LABS - Cape Town & Department of Physics University of Cape Town

Kruger 2014, December 4, 2014

Outline

1 Whys and Hows

2 ALICE setup

3 Data Samples

4 Analysis strategy

- \circ Signal (W) and ${\rm Z}/\gamma^*$ templates
- Heavy flavour background
- Signal extraction: Global fits
- $\circ \; \mathsf{Acceptance}{\times} \mathsf{Efficiency} \; \mathsf{correction}$

5 Results

- \circ Cross section
- \circ Comparison to pQCD calculations
- \circ Yields as a function of event activity

6 Conclusions

Whys and Hows

Whys:

- $\bullet~\mathrm{W}$ is an electroweak probe produced in hard interactions
- In proton-proton collisions:
 - sensitive to parton distributions functions (PDFs)

In proton-lead collisions:

- sensitive to modification of parton distributions inside the nucleus
- test binary scaling of hard processes

In lead-lead collisions:

- not sensitive to strong interaction \Rightarrow reference probe for medium-induced effects.
- test binary scaling of hard processes

Hows:

- Cross section of muons from W-boson decays at forward rapidity is measured by fitting the p_T distribution of single muons
- W boson is the main contributor to the single muon $p_{\rm T}$ spectrum at $p_{\rm T}~>$ 30 GeV/c
- W decay is a Jacobean peak over ${\rm Z}/\gamma^*$ and QCD background
- Maximum production at $p_{\mathrm{T}}~\sim M_{\mathrm{W}}/2$

ALICE setup

• ALICE layout outlining detectors used for multiplicity (event activity) determination and muon reconstruction

Data Samples

- p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}$ = 5.02 TeV ($E_{\rm p}=4$ TeV and $E_{\rm Pb}=1.58$ TeV)
- Two beam configurations with a rapidity shift ($\triangle y = 0.465$) in the proton direction Forward (p-Pb) Backward (Pb-p)

 $2.03 < y_{\rm cms} < 3.53$

 $-4.46 < y_{\rm cms} < -2.96$

 \Rightarrow y_{cms} covered by the muon spectrometer

- Statistics
 - high $p_{\rm T}$ muon triggered events (V0A & V0C & muon with $p_{\rm T}~\gtrsim$ 4 GeV/c)

	Integrated Luminosity $({ m nb}^{-1})$	
Forward	4.9	
Backward	5.8	

- Muon track selection:
 - geometrical acceptance cuts
 - matching of the tracking and trigger tracks to reduce background from punch-through hadrons
 - correlation of momentum (*p*) and Distance of Closest Approach (*DCA*) to the interaction point to reduce fake and beam gas tracks

Analysis strategy

Background sources:

- $\bullet~8 < p_{\rm T}~<$ 40 GeV/c heavy-flavour decay muon background is dominant
- $p_{\rm T}~>50~{\rm GeV/c~Z}/\gamma^*$ is the main source of background

• W^{\pm} signal is extracted by fitting the single muon p_{T} spectrum with:

$$\mathbf{f}(\boldsymbol{\rho}_{\mathrm{T}}) = \mathbb{N}_{\mu \leftarrow \mathrm{QCD}} \cdot \mathbf{f}_{\mu \leftarrow \mathrm{QCD}} + \mathbb{N}_{\mu \leftarrow \mathrm{W}} \cdot \mathbf{f}_{\mu \leftarrow \mathrm{W}} + \mathbb{N}_{\mu \leftarrow \mathrm{Z}/\gamma^{*}} \mathbf{f}_{\mu \leftarrow \mathrm{Z}/\gamma^{*}}$$

where:

 $\begin{array}{ll} \mathbf{f}_{\mu\leftarrow QCD} &= \mbox{phenomenological function or FONLL based template [JHEP 1210 (2012) 137]} \\ \mathbf{f}_{\mu\leftarrow W}, \mathbf{f}_{\mu\leftarrow Z/\gamma^*} &= \mbox{POWHEG based Monte Carlo (MC) templates [JHEP 0807(2008)060]} \\ \mathbb{N}_{\mu\leftarrow QCD}, \mathbb{N}_{\mu\leftarrow W} &= \mbox{free normalization parameters} \\ \mathbb{N}_{\mu\leftarrow Z/\gamma^*} &= \mbox{fixed to } \mathbb{N}_{\mu\leftarrow W}, \mbox{ using ratios of cross-sections from MC } \frac{\sigma_{\mu\leftarrow Z/\gamma^*}}{\sigma_{\mu\leftarrow W}} \end{array}$

• Extracted signal is corrected for Acceptance×Efficiency (A $\times\,\varepsilon)$ to obtain the yield

Signal (W) and ${\rm Z}/\gamma^*$ templates

Simulation configuration:

- W and ${\rm Z}/\gamma^*$ events generated using POWHEG (default) with CTEQ6m PDFs in pp and pn collisions
- Forced to decay to μ^\pm

Generators and their roles:

♦ POWHEG:

• generate hard events, no showering and no shadowing

♦ PYTHIA6.4:

- used to include shadowing parameterized by EPS09 (p and n considered inside the Pb)
- used only for systematic determination

Combine pp and pn with

$$\frac{1}{N_{\rm pPb}} \cdot \frac{dN_{\rm pPb}}{dp_{\rm T}} = \frac{Z}{A} \cdot \frac{dN_{\rm pp}}{dp_{\rm T}} + \frac{A-Z}{A} \cdot \frac{dN_{\rm pn}}{dp_{\rm T}}$$

to obtain the templates, where

A = 208 (mass number of the Pb nucleus) Z = 82 (atomic number of the Pb nucleus)

Heavy flavour background

♦ FONLL:

- Muons from B and D mesons in pp collisions at \sqrt{s} = 5.02 TeV http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html
- CTEQ6.6 parton distribution functions is used
- small effects of nuclear modification of the PDFs at high $p_{\rm T}$ Nuclear Physics A 00 (2014) 1–4

♦ Phenomenological functions used by other LHC experiments:

• ATLAS ATLAS-COM-CONF-2011-088:

$$f_{bkg}(p_{\mathrm{T}}) = a \cdot \exp\left(-b \cdot p_{\mathrm{T}}\right) + c \cdot \frac{\exp(-d \cdot \sqrt{p_{\mathrm{T}}})}{p_{\mathrm{T}}^{2.5}}$$

• 2^{nd} term of ATLAS:

$$f_{bkg}(p_{\mathrm{T}}) = c \cdot rac{\exp(-d \cdot \sqrt{p_{\mathrm{T}}})}{p_{\mathrm{T}}^{2.5}}$$

Signal extraction: Global fits

• Fit range $12 < p_{\rm T} < 80$ GeV/c, $N_{\mu \leftarrow {
m W}}$ extracted by integrating from $10 < p_{\rm T} < 80$ GeV/c

Forward rapidity

ALI-PREL-81302

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

W-boson production

Signal extraction: Global fits

• Fit range $12 < p_{\rm T} < 80$ GeV/c, $N_{\mu \leftarrow {\rm W}}$ extracted by integrating from $10 < p_{\rm T} < 80$ GeV/c

Backward rapidity

ALI-PREL-81306

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

Systematics on the signal extraction

- \diamond $\mathtt{N}_{\mu \leftarrow W}$ is extracted from a large number of fit trials, varying:
 - The p_{T} range where the fit is performed
 - QCD or Heavy-flavour decay muons background description
 - + Fraction of ${\rm Z}/\gamma^*$ to ${\rm W}$ decay muons: \Rightarrow obtained using PYTHIA and POWHEG
 - Alignment effects \Rightarrow vary the position of detector elements

\diamond Weighted average over

(3 background descriptions)×(different p_T ranges)×(2 N_{µ←Z/γ*}/N_{µ←W})×(2 alignment configurations)×(1 MC templates for the signal) trials:

where $\sigma_{\mu \leftarrow W}$ is the statistical uncertainty per trial

• the statistical error is given by propagating the error on each trial

$$\delta_{<\mathbb{N}_{\mu\leftarrow W}>}^{\texttt{stat}} = \frac{\sqrt{\sum_{i=1}^{n} (\texttt{w}_{i}\sigma_{\mu\leftarrow W,i})^{2}}}{\sum_{i=1}^{n}\texttt{w}_{i}} \cdot \sqrt{\texttt{n}}$$

- systematic error is estimated assuming $N_{\mu\leftarrow W}$ is extracted from a uniform distribution

$$\delta^{\tt syst}_{< \mathtt{N}_{\mu} \leftarrow \mathtt{W}>} = \frac{\mathtt{N}_{\mu} \leftarrow \mathtt{W}(\mathtt{max.}) - \mathtt{N}_{\mu} \leftarrow \mathtt{W}(\mathtt{min.})}{\sqrt{12}}$$

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

Acceptance×Efficiency correction

- Yield is obtained by correcting $N_{\mu \leftarrow W}$ by $A \times \varepsilon$
- $\mathbf{A}\times\varepsilon$ is computed from the templates
- For $\mu^{\pm} \leftarrow W^{\pm}$ it is:

	$\mathbf{A}\times \boldsymbol{\varepsilon}$	
	μ^+	μ^-
p–Pb	0.888	0.887
Pb–p	0.775	0.760

Systematics:

- Signal extraction
 - \Rightarrow vary between \sim 6 % and \sim 10 %

• Alignment effects

 \Rightarrow systematics from detector configuration found to be <1%

• Tracking/trigger efficiencies

 \Rightarrow tracking 2%, trigger 1% and track and trigger matching 0.5%

 \Rightarrow propagate to $\mathrm{N}_{\mu\leftarrow\mathrm{W}}$ \Rightarrow Conservative uncertainty of 2.5% considered

♦ These systematics holds for all event activity (multiplicity) bins

Computing the cross section

• Cross-section is computed as:

$$\sigma_{\mu \leftarrow W} = \frac{N_{\mu \leftarrow W}}{A \times \varepsilon} \times \frac{1}{L_{int}}$$

where the integrated luminosity is:

$$\mathrm{L_{int}} = \frac{\mathrm{N_{MB}}}{\sigma_{\mathrm{MB}}} = \frac{\mathrm{N_{MSH}} \times \mathrm{F_{norm}}}{\sigma_{\mathrm{MB}}}$$

- High $p_{\rm T}$ muon triggered (MSH) data sample
- Number of MSH events $(N_{\rm MSH})$ must be normalized to the number of minimum-bias (MB) events $N_{\rm MB}$ to obtain the integrated luminosity:

 \diamond The normalization factor $\mathrm{F}_{\mathrm{norm}}$ is:

- computed with two methods
- takes into account pile-up
- \Rightarrow Systematic difference between these methods is $\sim 1\%$

 $\diamond~\sigma_{\rm MB}$ = 2.09 $\pm~$ 0.07 b and $\sigma_{\rm MB}$ = 2.12 $\pm~$ 0.06 b for p–Pb and Pb–p respectively _JINST 9 (2014) 11, P11003

Cross section

• Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{\rm cms} <$ 3.53 and $-4.46 < y^{\mu}_{\rm cms} < -2.96$

Cross section

- Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{\rm cms} <$ 3.53 and $-4.46 < y^{\mu}_{\rm cms} < -2.96$
- As expected there is large difference between $\mu^+ \leftarrow W^+$ and $\mu^- \leftarrow W^-$ at backward rapidity \Rightarrow isospin effects

Cross section vs pQCD at NLO calculations

• Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{cms} <$ 3.53 and $-4.46 < y^{\mu}_{cms} < -2.96$

Cross section vs pQCD at NLO calculations

- Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{\rm cms} <$ 3.53 and $-4.46 < y^{\mu}_{\rm cms} < -2.96$
- pQCD at NLO with CT10 (PDFs) predictions by H. Paukkunen are in agreement with measurements (Theoretical predictions: Paukkunen, Salgado, JHEP 1103 (2011) 071)

Cross section vs pQCD at NLO calculations with nuclear PDF

• Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{cms} <$ 3.53 and $-4.46 < y^{\mu}_{cms} < -2.96$

Cross section vs pQCD at NLO calculations with nuclear PDF

- Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{\rm cms} <$ 3.53 and $-4.46 < y^{\mu}_{\rm cms} < -2.96$
- pQCD at NLO with CT10 (PDFs) and EPS09 (nPDFs) predictions by H. Paukkunen are compared with measurements. (Theoretical predictions: Paukkunen, Salgado, JHEP 1103 (2011) 071)

Cross section vs pQCD at NLO calculations with nuclear PDF

- Cross sections of $\mu \leftarrow W$ is measured in two rapidity intervals, 2.03 $< y^{\mu}_{\rm cms} <$ 3.53 and $-4.46 < y^{\mu}_{\rm cms} < -2.96$
- pQCD at NLO with CT10 (PDFs) and EPS09 (nPDFs) predictions by H. Paukkunen are compared with measurements. (Theoretical predictions: Paukkunen, Salgado, JHEP 1103 (2011) 071)
- With shadowing the theory is in better agreement with the measured $\sigma_{\mu^+ \leftarrow W^+}$ and $\sigma_{\mu^- \leftarrow W^-}$ at forward rapidity within uncertainty

Determination $\langle \mathrm{N}_{\mathrm{coll}} \rangle$

- + $\rm N_{\rm coll}$ is the number of binary nucleon-nucleon collisions
- Since W production is a hard process it is expected to scale with $N_{\rm coll}$
- The average number of binary collisions $\langle N_{\rm coll}\rangle$ is expected to be correlated with event activity/multiplicity
- \diamond Different multiplicity estimators with different approaches were used to extract $\langle N_{\rm coll} \rangle$:
 - $\bullet\,$ Glauber Model+Negative Binomial Distribution fits to amplitude of
 - \Rightarrow V0A and V0C detectors
 - \Rightarrow clusters from the first layer of the SPD (CL1)
 - Hybrid method:

 \Rightarrow ZNA and ZNC: scaling $\langle {\rm N}_{\rm part}\rangle$ in minimum-bias collisions by the ratio between the average multiplicity density measured at mid-rapidity in a given ZN energy event class and the one measured in minimum bias collisions

Systematic uncertainty on the normalisation to $\langle N_{coll}\rangle$ range from 8% to 21% depending on a multiplicity bin

$\mathrm{Yield}/\langle \mathrm{N_{coll}}\rangle$

- In order to increase statistics $\mu^+ \leftarrow \mathrm{W}^+$ and $\mu^- \leftarrow \mathrm{W}^-$ were combined
- $\mu \leftarrow W$ yield per binary collision is independent of collision multiplicity within systematics

Conclusions

- Production of W^- and W^+ was measured in two rapidity ranges in p-Pb collisions at $\sqrt{s_{\rm NN}}{=}5.02~{\rm TeV}$

Cross-section:

- theory is consistent with measurement
 - \Rightarrow even more so for pQCD at NLO using CT10 with EPS09

Yield normalized to $\langle N_{\rm coll} \rangle$:

- estimated with 3 multiplicity estimators
- independent of the collision multiplicity within systematics

Backup

 $\langle N_{coll} \rangle$

$$\langle N_{\rm coll} \rangle = \langle N_{\rm part} \rangle_{\rm MB} \times \Big(\frac{\langle dN/d\eta \rangle_{\rm i}}{\langle dN/d\eta \rangle_{\rm MB}} \Big)_{-1 < \eta < 0} - 1$$

Summary of the systematics

- \diamond Systematics on the generator based on POWHEG and PYTHIA
 - PYTHIA also used to take into account shadowing effects
- \diamond Other systematics:
 - variation of the input PDFs
 - ${\rm Z}/\gamma^{*}$ to ${\rm W}^{\pm}$ fraction

both negligible

Summary of the systematics:

Signal extraction	
(includes alignment, fit stability/shape, etc.)	from $\sim 6\%$ to $\sim 10\%$
Acc.×Eff.	
 track./trig. efficiencies 	2.5%
– alignment	< 1 %
Normalisation to MB	
– F _{norm}	1%
$-\sigma_{\mathrm{MB}}$	3.2% (forward) 3% (backward)