

Light Flavor Production in the ALICE Experiment

Michele Floris (CERN) for the ALICE Collaboration Kruger, December 4th, 2014

And now for something completely different...

Light Flavor Production in the ALICE Experiment Michele Floris (CERN) for the ALICE Collaboration Kruger, December 4th, 2014

pp Collisions

- (Soft) QCD
- Monte Carlo tuning
- Pb–Pb reference

Pb-Pb Collisions

- Bulk properties
- Collective behavior
- Hadronization
- Parton energy loss

pp Collisions

- (Soft) QCD
- Monte Carlo tuning
- Pb–Pb reference

Pb-Pb Collisions

- Bulk properties
- Collective behavior
- Hadronization
- Parton energy loss

p-Pb Collisions

- Control experiment
- Intermediate size
- "Collective medium"?

pp Collisions

- (Soft) QCD
- Monte Carlo tuning
- Pb–Pb reference

Pb-Pb Collisions

- Bulk properties
- Collective behavior
- Hadronization
- Parton energy loss

p-Pb Collisions

- Control experiment
- Intermediate size
- "Collective medium"?

A rich "Zoo"

π

d

K⁰

Ω

K*

Λ*

pp Collisions

- (Soft) QCD
- Monte Carlo tuning
- Pb–Pb reference

Pb-Pb Collisions

- Bulk properties
- Collective behavior
- Hadronization
- Parton energy loss

p-Pb Collisions

- Control experiment
- Intermediate size
- "Collective medium"?

π , K, p transverse momentum distributions

- Reference for energy loss studies in Pb-Pb
- Monte Carlo tuning
- pQCD studies and constraints for Fragmentation Functions

5

Large differences between different sets of FF Gluon-to-hadron too hard? Identified particles: stronger constraints ⇒ Calls for a global reanalysis of FF (see e.g. arXiv:1410.6027)

Fragmentation Functions

Large differences between different sets of FF Gluon-to-hadron too hard? Identified particles: stronger constraints ⇒ Calls for a global reanalysis of FF (see e.g. arXiv:1410.6027)

0

1

Nuclei

0

Color Super-

conductor?

Net Baryon Density

Neutron stars

Low: p_T < 3 GeV/c

Bulk properties and collective expansion, hadrochemistry

Intermediate: $3 < p_T < 7 \text{ GeV/c}$

Coalescence and anomalous baryon enhancement

High: $p_T > 7 \text{ GeV/c}$

"Jet Quenching": Search for medium modification of fragmentation functions

ALI-PREL-34223

Isotropic (radial) flow

hep-ph/0407360

Isotropic (radial) flow

hep-ph/0407360

Transverse momentum distributions

- Clear evolution of spectra with centrality.
- Central collisions: flat at low p_T, nearly exponential at high p_T
 - Indication for collective radial expansion

Comparison to Hydro Models

Hydro models give a very satisfactory description! Requires interactions in the hadronic phase?

Anisotropic flow

ALI-PUB-85247

Azimuthal anisotropy: early thermalization Mass ordering: occurs naturally in hydro Details: interactions in hadronic medium, hadronization mechanism

Alice results: π , K, p, ϕ , Λ , Ξ , Ω

Overall features reproduced by Hydro+ Hadronic cascade

Role of hadronic phase?

- Needed to describe protons
- Spoils mass ordering

M. Floris

ALI-DER-85768

Hints for flow in p-A collisions?

Spectra and **correlation** measurements show hints of collective behavior in p-Pb collisions

- Evolution with multiplicity
- Azimuthal anisotropy
- Mass ordering

→ S. Bufalino, Tue 2^{nd}

ALICE, PLB 728 25 (2014) ALICE, PLB 726 164 (2013)

Hadron abundances

Baryonic chemical potential (MeV)

- Hadrons produced in apparent thermal equilibrium
 - In the simplest case: $N(m) \propto e^{-m/T}$
- Measurements at different √s line up in a hadron freeze-out curve
- Key Questions:
 - What is the relation to the critical temperature (154 ± 9 MeV)?
 - How is this apparent equilibrium reached?

Hadron abundances

- Hadrons produced in apparent thermal equilibrium
 - In the simplest case: $N(m) \propto e^{-m/T}$
- Measurements at different √s line up in a hadron freeze-out curve
- Key Questions:
 - What is the relation to the critical temperature (154 ± 9 MeV)?
 - How is this apparent equilibrium reached?
- Excellent agreement between Thermal (aka Statistical Hadronization) models and data before LHC
- Precision era
 - (Small) deviations from overall trend and from equilibrium fits can improve our understanding of the underlying physics

Hadron abundances

T ~ 164 MeV

24 MeV, V=1950 fm³

- Hadrons produced in apparent thermal equilibrium
 - In the simplest case: $N(m) \propto e^{-m/T}$
- Measurements at different √s line up in a hadron freeze-out curve
- Key Questions:
 - What is the relation to the critical temperature (154 ± 9 MeV)?
 - How is this apparent equilibrium reached?
- Excellent agreement between Thermal (aka Statistical Hadronization) models and data before LHC
- Precision era
 - (Small) deviations from overall trend and from equilibrium fits can improve our understanding of the underlying physics

Data

O STAR

PHENIX

△ BRAHMS

T=164 MeV.

Model. x²/N, =31.6/12

1⊧

10⁻¹

Anomalous p/π ratio at the LHC

Is it only protons or all baryons? Why?! (NB with these 3 species, it would be enough to lower T ~ 140 MeV)

Ratios, Comparison to RHIC (AA)

Ratios, Comparison to RHIC (AA)

ALI-PREL-74463

M. Floris

ALI-PREL-74463

M. Floris

ALI-PREL-74463

M. Floris

ALI-PREL-74463

ALI-PREL-74463

ALI-PREL-74463

 $T_{lim} \approx 159 \text{ MeV} \text{ (post-LHC)}$

P Braun-Munziger et al, QM2012

ALICE

 $T_{lim} \approx 159 \text{ MeV} \text{ (post-LHC)}$

P Braun-Munziger et al, QM2012

ALICE

Origin of tension Thermal Model / Data?

One of the most discussed features of HI results at the LHC!

• Incomplete hadron spectrum in the model

PRL 113, 072001 (2014) arXiv:1405.7298

- Affects feed-down and hence final abundances
- Inelastic interactions in the hadronic phase PRC 90, 054907 (2014)
 - May deplete baryons
- Flavor ordering at freeze-out
 - Different T preferred by s and *u*-d
- Non–equilibrium thermal model
 - reflects equilibrium in the preceding QGP phase

PRL 111, 202302 (2013)

PRC, 88, 021901 (2013)

and the second second

Origin of tension Thermal Model / Data?

One of the most discussed features of HI results at the LHC!

• Incomplete hadron spectrum in the model

Affects feed-down and hence final abundances

- Inelastic interactions in the hadronic phase PRC 90, 054907 (2014)
 - May deplete baryons
- Flavor ordering at freeze-out
 - Different T preferred by s and u-d
- Non-equilibrium thermal model

PRL 111, 202302 (2013)

PRL 113, 072001 (2014)

arXiv:1405.7298

- PRC, 88, 021901 (2013)
- reflects equilibrium in the preceding QGP phase

Crucial to distinguish different scenarios:

 \Rightarrow detailed understanding of **collision dynamics**

 \Rightarrow window in the **deconfined phase**

Deuteron in p-Pb

Deuteron enhancement in p-Pb Production mechanism of Nuclei Hint for coalescence?

 \rightarrow N. Sharma, Tue 2nd

Intermediate pr

Fragmentation: single parton with $p_T > p_T^{[hadron]}$ Recombination: 2(3) partons with $p_T \sim p_T^{[hadron]}/2(3)$

- Enhances B/M
- Scaling with Number of Constituent Quarks (NCQ) (In some models: thermal + minijet recombination)

Fragmentation: single parton with $p_T > p_T^{[hadron]}$ Recombination: 2(3) partons with $p_T \sim p_T^{[hadron]}/2(3)$

- Enhances B/M
- Scaling with Number of Constituent Quarks (NCQ) (In some models: thermal + minijet recombination)

Fragmentation: single parton with $p_T > p_T^{[hadron]}$ Recombination: 2(3) partons with $p_T \sim p_T^{[hadron]}/2(3)$

- Enhances B/M
- Scaling with Number of Constituent Quarks (NCQ) (In some models: thermal + minijet recombination)

Fragmentation: single parton with $p_T > p_T^{[hadron]}$ Recombination: 2(3) partons with $p_T \sim p_T^{[hadron]}/2(3)$

- Enhances B/M
- Scaling with Number of Constituent Quarks (NCQ) (In some models: thermal + minijet recombination)

Fragmentation: single parton with $p_T > p_T^{[hadron]}$ Recombination: 2(3) partons with $p_T \sim p_T^{[hadron]}/2(3)$

- Enhances B/M
- Scaling with Number of Constituent Quarks (NCQ) (In some models: thermal + minijet recombination)

B/M ratios at intermediate p_T

Radial Flow explains rise Recombination describes some features of the data Interplay of "bulk" expansion and hard processes?

B/M ratios at intermediate p_T

Radial Flow explains rise Recombination describes some features of the data Interplay of "bulk" expansion and hard processes?

B/M ratios: φ/p

The φ meson has the same shape as p: mass ordering (as expected from radial flow)?

Recombination and anisotropic flow

ALI-PUB-85239

Recombination and v_2 \Rightarrow B/M ordering + NCQ scaling

φ central: mass ordering at all p_T (close to p) **φ semi-central**: mass ord. low p_T , follows π high p_T

Recombination and anisotropic flow

ALICE, arXiv:1405.4632

ALI-PUB-82622

Recombination and $v_2 \Rightarrow$ B/M ordering + NCQ scaling

φ central: mass ordering at all p_T (close to p) **φ semi-central**: mass ord. low p_T , follows π high p_T Violation of constituent quark scaling ~ ±20% B/M ratios in p–Pb collisions

Similar behavior seen in p-Pb Disappears if analysis is done only inside jet cones (similar conclusion in Pb-Pb)

Kruger 2014 - ALICE Light Flavor

B/M ratios in p-Pb collisions

Similar behavior seen in p-Pb Disappears if analysis is done only inside jet cones (similar conclusion in Pb-Pb)

High p_T suppression

Measured for a variety of LF particles: reference for HF studies

- → S. Masciocchi, Tue 2nd
- → K. Reygers, Fri 5th
- M. Floris

ALICE, PLB 720, 52 ALICE, PRL 110, 082302 ALICE, PLB 736,196

High p_T suppression

Suppression of high p⊤ particles

Studied through "nuclear modification factor"

$$R_{AA} = \frac{AA}{\text{rescaled pp}} = \frac{d^2 N_{AA}/dp_{\rm T} dy}{\langle N_{coll} \rangle d^2 N_{pp}/dp_{\rm T} dy}$$

Measured for a variety of LF particles: reference for HF studies

- → S. Masciocchi, Tue 2nd
- → K. Reygers, Fri 5th
- M. Floris

ALICE, PLB 720, 52 ALICE, PRL 110, 082302 ALICE, PLB 736,196

p-Pb results: no modifications at high p_T ! (di)Jet results consistent with this picture (see also ATLAS and CMS results)

A puzzle in p-Pb?

Atlas and CMS hint at an increase at high pt

Not explained by nPDF modifications (shadowing)

Consistent with jet *R_{pA}*? Origin?

→ J. Harris, Fri 5th

Largest **difference among experiments**: pp reference Low statistics: need new data in pp at $\sqrt{s} = 5$ TeV!

Identified light-flavor measurements crucial to constrain bulk properties of the matter created in HI collisions

Several observables suggest formation of a "collective medium" already in high multiplicity p-Pb (and pp) collisions

- LHC still close to hydrodynamic limit for (semi) central collisions
 - Very strong radial and anisotropic flow,
 - Hydrodynamic models describe data qualitatively
 - Collective behavior in p-Pb collisions? → pp studies at high multiplicity
- Equilibrium thermal model challenged by the data: puzzle still open
- "Baryon anomaly" is a bulk effect, strong constraints for coalescence models
 - Seems to be driven by mass rather than meson/baryon
- No (light) flavor dependence of the R_{AA} at high p_T
- Enhanced R_{pA} at high p_T ?
 - Need reference data

and the

Backup

Analysis in the relativistic rise

Kinetic freezeout: Blast wave fits

Kinetic freezeout: Blast wave fits

Blast wave model: thermalized volume elements, expanding in a common velocity field Parameters: T_{kin} , $\beta_T = \beta_S \cdot (r/R)^n$

Kinetic freezeout: Blast wave fits

Blast wave model: thermalized volume elements, expanding in a common velocity field Parameters: T_{kin} , $\beta_T = \beta_S \cdot (r/R)^n$
Kinetic freezeout: Blast wave fits

Blast wave model: thermalized volume elements, expanding in a common velocity field Parameters: T_{kin} , $\beta_T = \beta_S \cdot (r/R)^n$

Kinetic freezeout: Blast wave fits

Blast wave model: thermalized volume elements, expanding in a common velocity field Parameters: T_{kin} , $\beta_T = \beta_S \cdot (r/R)^n$

Comparison to hydro models

Description of the late stages of the fireball needed? Not expected to work in peripheral collisions

Early kinetic freezeout of ϕ , Ξ , Ω ?

Sequential freezeout (smaller hadronic cross-section)?

a) Correlation

a stand

Intermediate p_T in the bulk and in the jet

a) Correlation

M. Floris

a starter

Pb-Pb, $\sqrt{s_{NN}}$ = 2.76TeV, 0-10% central

ALI-PREL-15474

Intermediate p_T in the bulk and in the jet

Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV, 0-10% central

The ALICE detector

Barrel PID & Tracking $|\eta|$ <0.8 **Forward** (V0) event activity selection, **2.8(-3.7)** $\leq \eta \leq$ **5.1(-1.7)**

Tracking and Particle Identification

Particle identification (many different techniques) Extremely low-mass tracker ~ 10% of X₀ Excellent vertexing capability Efficient low-momentum tracking – down to ~ 100 MeV/c

Flavor dependence of RAA?

ALICE

- Quark jets vs gluon jets
- Color exchange with the medium

• Heavy flavor? (dead cone effect)

$$\begin{array}{ll} \Delta E_{quark} < \Delta E_{gluon} &, \quad \Delta E_{massive \; quark} < \Delta E_{light \; quark} \\ & \downarrow \\ & R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi) \end{array}$$

Wiedemann et al, EPJC 55, 293–302

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

M. Floris

ALI-PREI

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

ALI-PREL-7448

M. Floris

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

ALI-PREL-74481

M. Floris

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

ALI-PREL-744

M. Floris

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

ALI-PREL-74481

M. Floris

Very good if not including nuclei (similar to Refs)

Nuclei prediction off by factor ~ 5 Try to include nuclei in fit $\gamma_q \rightarrow 1$

Nuclei v₂ in AuAu:

R. Haque, STAR, Mon 19

Petran et al PRC 88 021901 Petran et al, arXiv:1303.2098 Petran et al, arXiv:1310.2551 Petran et al, J. Phys. G 509 012018

ALI-PREL-7448

M. Floris

Non equilibrium fits vs \s and system size

Uniformity of fireball freeze-out parameters across energy and centrality

Strangeness/entropy smaller than at RHIC?

Rafelski, HIF CERN, March 20, 2014 Rafelski et al, A. Phys.Pol. B. Supp 7 35

Incomplete hadron spectrum

Using assumptions on Hagedorn states, p/π reproduced

J. Noronha-Hostler, arXiv:0906.3960 (RHIC)

M. Floris

Late freeze-out for protons? Baryon annihilation ↘ p yield Unmeasured cross sections? Inverse reactions (nπ → pp̄, heavy meson → pp̄)? Centrality dependence?

Becattini et al, arXiv:1212.2431 arXiv:1405.0710

Late freeze-out for protons?

Baryon annihilation \searrow p yield

Unmeasured cross sections? Inverse reactions (nπ → pp̄, heavy meson → pp̄)? Centrality dependence?

Becattini et al, arXiv:1212.2431 arXiv:1405.0710

Late freeze-out for protons? Baryon annihilation ↘ p yield Unmeasured cross sections? Inverse reactions (nπ → pp̄, heavy meson → pp̄)? Centrality dependence?

arXiv:1405.0710

Late freeze-out for protons? Baryon annihilation ↘ p yield Unmeasured cross sections? Inverse reactions (nπ → pp̄, heavy meson → pp̄)? Centrality dependence?

arXiv:1405.0710

arXiv:1405.0710

Late freeze-out for protons? Baryon annihilation ↘ p yield Unmeasured cross sections? Inverse reactions (nπ → pp̄, heavy meson → pp̄)? Centrality dependence?

Correction factors now computed for **all centrality bins Back-reaction neglected**, effect estimated to be small (but no rigorous estimate yet)

Flavor hierarchy in the QCD phase transition

Lattice: indication of a **flavor hierarchy** at freeze-out?

Pre-hadronic bound states: strangeness above T_C?

Connection to experiment:

higher order moments of net charges? (related to susceptibilities ratios of conserved charges) **Caveats**: needs strange baryons, limited phase space, baryons vs protons ...

Bellwied et al, PRL 111 202302 Ratti et al PRD85 014004 F. Karsh, Cent. Eur. J. Phys., 10 1234

Higher moments: HRG and STAR

P.Alba et al, arXiv:1403.4903 S. Borsanyi et al, arxiv.org:1403.4576 STAR arXiv:1402.1558 STAR, PRL, 112 (2014) 032302

Higher moments: HRG and STAR

P.Alba et al, arXiv:1403.4903 S. Borsanyi et al, arxiv.org:1403.4576 STAR arXiv:1402.1558 STAR, PRL, 112 (2014) 032302

I al in the

Reminder: what drives a thermal fit

• Thermal equilibrium, yields determined by 3 parameters:

12-16

ALICE

Reminder: what drives a thermal fit

- Thermal equilibrium, yields determined by 3 parameters:
 - T is constrained by particles with a large mass difference
 - e.g. p/ π , Ω/π , or even d/ π if you believe nuclei should be thermal
 - μ_B is constrained by anti-baryon/baryon ratios (at LHC ratios = 1 $\Rightarrow \mu_B = 0$)
 - Volume V is mostly driven by the most abundant species (π)

Reminder: what drives a thermal fit

- Thermal equilibrium, yields determined by 3 parameters:
 - T is constrained by particles with a large mass difference
 - e.g. p/ π , Ω/π , or even d/ π if you believe nuclei should be thermal
 - μ_B is constrained by anti-baryon/baryon ratios (at LHC ratios = 1 $\Rightarrow \mu_B = 0$)
 - Volume V is mostly driven by the most abundant species (π)
- Deviations from grand canonical equilibrium
 - Small system: strangeness conserved exactly (canonical ensemble). Yields reduced (canonical suppression)

Reminder: what drives a thermal fit

- Thermal equilibrium, yields determined by 3 parameters:
 - T is constrained by particles with a large mass difference
 - e.g. p/ π , Ω/π , or even d/ π if you believe nuclei should be thermal
 - μ_B is constrained by anti-baryon/baryon ratios (at LHC ratios = 1 $\Rightarrow \mu_B = 0$)
 - Volume V is mostly driven by the most abundant species (π)
- Deviations from grand canonical equilibrium
 - Small system: strangeness conserved exactly (canonical ensemble). Yields reduced (canonical suppression)
 - Not enough to explain data:
 - Strangeness has to be conserved exactly in a volume smaller than the volume of the system (radius: R_c < R_v)
 - Empirical under-saturation parameter (γs)
 - **φ meson** (hidden strangeness, not canonically suppressed)
Reminder: what drives a thermal fit

- Thermal equilibrium, yields determined by 3 parameters:
 - T is constrained by particles with a large mass difference
 - e.g. p/ π , Ω/π , or even d/ π if you believe nuclei should be thermal
 - μ_B is constrained by anti-baryon/baryon ratios (at LHC ratios = 1 $\Rightarrow \mu_B = 0$)
 - Volume V is mostly driven by the most abundant species (π)
- Deviations from grand canonical equilibrium
 - Small system: strangeness conserved exactly (canonical ensemble). Yields reduced (canonical suppression)
 - Not enough to explain data:
 - Strangeness has to be conserved exactly in a volume smaller than the volume of the system (radius: R_c < R_v)
 - Empirical under-saturation parameter (ys)
 - **φ meson** (hidden strangeness, not canonically suppressed)
 - γ_q is sensitive to number of valence light quarks
 - Adds a degree of freedom between baryons and mesons

and the second

Reminder: what drives a thermal fit

- Thermal equilibrium, yields determined by 3 parameters:
 - T is constrained by particles with a large mass difference
 - e.g. p/ π , Ω/π , or even d/ π if you believe nuclei should be thermal
 - μ_B is constrained by anti-baryon/baryon ratios (at LHC ratios = 1 $\Rightarrow \mu_B = 0$)
 - Volume V is mostly driven by the most abundant species (π)
- Deviations from grand canonical equilibrium
 - Small system: strangeness conserved exactly (canonical ensemble). Yields reduced (canonical suppression)
 - Not enough to explain data:
 - Strangeness has to be conserved exactly in a volume smaller than the volume of the system (radius: R_c < R_v)
 - Empirical under-saturation parameter (ys)
 - **φ meson** (hidden strangeness, not canonically suppressed)
 - γ_q is sensitive to number of valence light quarks
 - Adds a degree of freedom between baryons and mesons
- Physical picture of non-equilibrium models: supercooled quark-gluon plasma undergoes sudden hadronization → no further re-interaction

Strangeness production in p-Pb collisions

Strangeness enhancement in p-Pb collisions!

- Ξ reaches the Pb-Pb (GC?) value
- Ω not yet

Origin of the tension?

Anomalous p/π ratio at the LHC

T = 137.7 MeV, $\gamma_q \sim 1.6$, $\gamma_s \sim 2.75$ Hadronization pressure P = 82 MeV/fm³ Rafelski, Letessier, PRC 83, 054909 (2011) Non equilibrium model prediction

53

Excluding protons or pions

ALI-PREL-74473

M. Floris

Excluding protons or pions

ALI-PREL-74473

57

ALICE

ALICE

 \rightarrow H. Oeschler, Mon 1st

 \rightarrow H. Oeschler, Mon 1st

 \rightarrow H. Oeschler, Mon 1st

