Charmonium production in Pb-Pb and p-Pb collisions with ALICE at the LHC

Ionut Arsene on behalf of the ALICE Collaboration University of Oslo

Discovery Physics at the LHC, Kruger Gate, South Africa, 1-6 december 2014

Initial time state

CGC

- Cold nuclear matter (CNM) effects
 - Gluon shadowing or gluon saturation expected to play an important role in the small-x region at LHC
 - Initial state parton energy loss
- > Cold nuclear matter effects currently studied in p-Pb collisions at $\sqrt{s_{_{NN}}}=5$ TeV

- Charm quarks produced via pair creation in gg processes
- Pair production in pp
 - σ_{cc}(pp @ 7TeV) = 8.5mb, ALICE JHEP 1207 (2012) 191
- > Central Pb-Pb collisions at LHC at $\sqrt{s_{NN}}$ =2.76 TeV have ~1500 nucleon-nucleon collisions: ~100 cc
- \succ Number of charm quarks conserved throughout the collision \rightarrow well calibrated probe !
- CNM: Nuclear absorption negligible at the LHC: formation time >> collision time

- Colour screening
 - Matsui and Satz, PLB 178 (1986) 416
- Sequential suppression depending on binding energy
 - Digal, Petreczky, Satz, PRD (2001) 0940150
- ≻ Melting ↔ formation of quarkonium states
 - Thews et al., PRC 63 (2001) 054905
 - Transport models

- > J/ ψ prompt feed-down from χ_c and ψ' (~35%)
- J/ψ non-prompt feed-down from weak decays of beauty mesons (~10%)

The ALICE setup

The ALICE setup

The ALICE setup

Quantifying medium effects -nuclear modification factor-

$$R_{AA} = \frac{d^2 N_{AA} / dp_T dy}{N_{coll} \times d^2 N_{pp} / dp_T dy}$$

- > Superposition of NN collisions $\rightarrow R_{AA}=1$
- Strong suppression for light hadrons observed at LHC in Pb-Pb collisions
- Weakly interacting particles are not affected by the QGP
 - Photons, W[±] and Z⁰ bosons R_{AA} is compatible with unity.

Inclusive J/ψ at the LHC

- > Clear J/ ψ suppression seen for all centralities
- Indication of less suppression at mid- than at forward rapidity
- ALICE results show smaller suppression compared to lower energy (PHENIX) in central collisions

Inclusive J/ψ at the LHC

- Models which include (re)combination agree with the data.
- Model uncertainties are dominated by the poor knowledge of the total cc crosssection and CNM effects

Inclusive J/ ψ as a function of p_{τ}

PLB734 (2014) 314

- > Striking difference between LHC and RHIC at low- p_{\perp}
 - Smoking gun" for (re)combination ?

Inclusive J/ψ as a function of rapidity

- > Strong rapidity dependence for low- p_{T} at y>3 (ALICE)
 - CNM effects, (re)combination ?

Elliptic flow

- Initial spatial anisotropy is converted into momentum-space anisotropy
- Strong elliptic flow observed for light particles
- > Is J/ψ inheriting any of the fireball collective flow via (re)combination?

- Measurements at RHIC compatible with no flow
- LHC data hints towards a non-zero flow in semi-central collisions

ψ ' production

- \succ ψ' is much less bound than J/ ψ
- > Ratio of R_{AA} for different charmonia are less dependent on the charm x-section
- > Transport and statistical hadronization models can be disentangled !

ψ' production

- Results available from both ALICE and CMS, but in different kinematical ranges
- The results still have large uncertainties
- > ALICE data seems to exclude a large ψ ' enhancement in central collisions

p - Pb @ 5.02 TeV

$E_{\rm Pb}$ =1.58 A TeV, $E_{\rm p}$ =4 TeV

The center-of-mass of the collision is shifted by Δy =0.465 towards the proton fragmention direction

Inclusive J/ψ vs rapidity

- J/ψ is suppressed at mid-rapidity and in the forward direction, compatible with energy loss (+shadowing) models
- No suppression observed in the backward direction

Inclusive J/ ψ vs p_{τ}

- > J/ ψ is suppressed at mid and forward rapidity, except for the highest p_{τ} region
- *R*_{pPb} grows with *p*_T, consistent with expectations from shadowing and energy loss calculations
- Early CGC calculation overestimate the suppression at forward rapidity

Quantifying CNM effects

- Similar Bjorken-x ranges probed for Pb-Pb @ 2.76 TeV and p-Pb @ 5.02 TeV
- Assume 2->1 kinematics for the J/ψ production mechanism:
 - > Factorization of shadowing effects: $CNM(Pb-Pb) = R_{pPb}(y>0) \times R_{pPb}(y<0)$
- > At low p_{τ} , (re)combination effects are equal or even larger than the suppression effects, when CNM effects are taken into account
- > A large suppression is observed at forward rapidity and high p_{τ} , where the CNM effects are negligible.

ψ' at SPS and RHIC

- ψ' suppressed at SPS in relatively small systems (like S-U), not in p-A
 - Final state interactions of the formed resonance in the cold nuclear medium
- > Puzzle? ψ ' suppressed in d-Au at RHIC
 - > No significant differences between J/ ψ and ψ ' expected at RHIC and LHC from CNM effects or formation time

ψ ' at the LHC

arXiv:1405.3796

- > Strong ψ ' suppression observed in p-Pb at both forward and backward rapidities
- Not expected from either shadowing or energy loss models

p-Pb event activity

Events (a.u.)

10⁻³

10-4

10⁻⁵

- Categorize events based on the multiplicity/energy measured with various detectors -> proxy to centrality
- Caveat: Correlation between multiplicity estimators and collision centrality much weaker compared to AA collisions -> posible biases!
- Assume p-Pb is a superposition of binary NN collisions and perform a Glauber fit, as for Pb-Pb
- Use the Glauber <*N*_{coll}> to define the nuclear modification factor in p-Pb event activity classes

Charmonia vs event activity

- > Both J/ ψ and ψ ' suppression factors seem to be correlated with the event activity
- \sim ψ ' strongly suppressed in events with large ZDC activity
 - The trend suggests a final state effect
 - e.g. the pre-resonant state interaction with the comover cloud? Ferreiro et al. arXiv: 1411.0549
- > What about the J/ ψ dependence on event activity?

Summary

- We presented ALICE results on J/ ψ and ψ ' production in Pb-Pb and p-Pb collisions
- ALICE results support the (re)combination picture in Pb-Pb:
 - Integrated J/ ψ R_{AA} in central collisions much higher w.r.t. RHIC results
 - The effect is concentrated at low p_{T}
 - The CNM effects estimated in p-Pb even indicate enhancement at low p_{T}
 - Indications of non-zero elliptic flow at forward rapidity
- High p_{T} J/ ψ at LHC are more suppressed compared to RHIC, as expected due to larger energy density of the fireball
- The J/ ψ measurements in p-Pb are compatible with shadowing and energy loss expectations
- J/ ψ suppression in p-Pb also depends on event activity, but the trend is different from the one of ψ ' at backward rapidity.
- ψ' suppression in p-Pb cannot be explained with shadowing and energy loss effects alone. Strong dependence of the suppression on event activity indicative of comover interactions?
- Various possible final state effects in p-Pb makes it difficult to rigourously estimate the CNM effects applicable to Pb-Pb collisions

Backup

J/ψ as a function of p_{τ}

- > Less suppression observed at low p_{T} (ALICE)
 - 50% of the J/ψ yield produced via (re)combination in transport models
- Stronger suppression and centrality dependence at high p_T (CMS, ALICE)

J/psi vs event activity

J/psi vs pt in event activity categories

Charmonium at lower energy experiments

Puzzles:

- Observation: Similar suppression factor vs centrality observed at mid-rapidity at SPS and RHIC.
 Explanation: Charmonia created from uncorrelated cc pairs during fireball evolution or at freeze-out, aka (re)combination
- Observation: At RHIC, more suppression at forward than at mid-rapidity
 Explanation: (Re)combination and shadowing/saturation effects could depend on rapidity

Inclusive J/ ψ as a function of p_{τ}

- Striking difference between LHC and RHIC at low-p_T
 - Smoking gun" for (re)combination ?
- Stronger suppression at LHC for high-p_T J/ψ's
 - Negligible (re)combination expected in this kinematic range
 - Higher energy density at LHC at play ?

