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Charmonia in nucleus-nucleus collisions
time

Initial 
state

Shadowing, 
CGC

➢ Cold nuclear matter (CNM) effects
➢ Gluon shadowing or gluon saturation 

expected to play an important role in 
the small-x region at LHC 

➢ Initial state parton energy loss

➢ Cold nuclear matter effects currently 
studied in p-Pb collisions at √s

NN
=5 TeV
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Charmonia in nucleus-nucleus collisions
time

Initial 
state

Early partonic 
stage

Shadowing, 
CGC

pair creation

➢ Charm quarks produced via pair creation in gg processes
➢ Pair production in pp

➢ σ
cc

(pp @ 7TeV) = 8.5mb, ALICE JHEP 1207 (2012) 191

➢ Number of charm quarks conserved throughout the collision → well calibrated 
probe !

➢ Central Pb-Pb collisions at LHC at √s
NN

=2.76 TeV have ~1500 nucleon-nucleon 

collisions: ~100 cc 

➢ CNM: Nuclear absorption negligible at the LHC: formation time >> collision time
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Charmonia in nucleus-nucleus collisions
time

Initial 
state

Early partonic 
stage

QGP hydro 
evolution

Shadowing, 
CGC

pair creation:
~100 cc

Melting <-> formation 
of charmonium states
Thermalization
Flow of heavy quarks

➢ Colour screening
➢ Matsui and Satz, PLB 178 (1986) 416

➢ Sequential suppression depending on binding 
energy
➢ Digal, Petreczky, Satz, PRD (2001) 0940150

➢ Melting ↔formation of quarkonium states
➢ Thews et al., PRC 63 (2001) 054905
➢ Transport models
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Charmonia in nucleus-nucleus collisions
time

Initial 
state

Early partonic 
stage

QGP hydro 
evolution

Chemical 
freeze-out

Shadowing, 
CGC

pair creation:
~100 cc

Melting <-> formation 
of charmonium states
Thermalization
Flow of heavy quarks

Charmonia formed 
via statistical 
hadronization at 
the phase 
boundary ?

➢ Enhancement of charmonia states from cc 
pairs at the chemical freeze-out

➢ Open charm and charmonium abundancies 
calculated assuming statistical 
hadronization.
➢ Braun-Munzinger and Stachel, PLB 490 (2000) 196 
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Charmonia in nucleus-nucleus collisions
time

Initial 
state

Early partonic 
stage

QGP hydro 
evolution

Chemical 
freeze-out

Shadowing, 
CGC

pair creation:
~100 cc

Melting <-> formation 
of charmonium states
Thermalization
Flow of heavy quarks

Charmonia formed 
via statistical 
hadronization at 
the phase 
boundary ?

Kinetic 
freeze-out

Free streaming, 
decays

➢ J/ψ prompt feed-down from χ
c   

and ψ' (~35%)
➢ J/ψ non-prompt feed-down from weak decays of beauty mesons (~10%)
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The ALICE setup
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e+ e-

ITS

TPC

TRD

Inner Tracking System (ITS):
High resolution tracking

Time Projection Chamber (TPC):
Tracking and particle identification

Transition Radiation Detector (TRD):
Electron-hadron separation

ITS

Pb-Pb @ 2.76 TeV,   |y|<0.9,         L
int

 = 28 μb-1

The ALICE setup

PLB734 (2014) 314
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μ -

μ+

MUON

Forward Muon Spectrometer:
   Dipole magnet, 
   Five muon tracking stations 
behind a front hadron absorber,
   Two trigger stations behind an 
additional hadron absorber.

Pb-Pb @ 2.76 TeV,   2.5<y<4.0,      L
int

 = 68.8 μb-1

The ALICE setup
PLB734 (2014) 314
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Quantifying medium effects
-nuclear modification factor-

p-Pb, ALICE EPJ C74 (2014) 9, 3054            γ, CMS, PLB 710 (2012) 256
Pb-Pb, ALICE, Phys.Lett.B720 (2013)52       W±, CMS, PLB715 (2012) 66
Pb-Pb, CMS, EPJC (2012) 72                       Z0, CMS, PRL106 (2011) 212301

➢ Superposition of NN collisions → R
AA

=1
➢ Strong suppression for light hadrons observed 

at LHC in Pb-Pb collisions
➢ Weakly interacting particles are not affected by 

the QGP
➢ Photons, W± and Z0 bosons R

AA
 is compatible 

with unity.

RAA=
d2 N AA /dpT dy

N coll×d2 N pp /dpT dy
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Inclusive J/ψ at the LHC

➢ Clear J/ψ suppression seen for all centralities
➢ Indication of less suppression at mid- than at forward rapidity
➢ ALICE results show smaller suppression compared to lower energy (PHENIX) 

in central collisions
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Inclusive J/ψ at the LHC

➢ Models which include (re)combination agree with the data.
➢ Model uncertainties are dominated by the poor knowledge of the total cc cross-

section and CNM effects



13

Inclusive J/ψ as a function of p
T

➢ Striking difference between LHC and RHIC at low-p
T 

➢ “Smoking gun” for (re)combination ?

PLB734 (2014) 314
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Inclusive J/ψ as a function of rapidity

➢ Strong rapidity dependence for low-p
T 
at y>3 (ALICE)

➢ CNM effects, (re)combination ?
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Elliptic flow

➢ Initial spatial anisotropy is converted into momentum-space anisotropy
➢ Strong elliptic flow observed for light particles
➢ Is J/ψ inheriting any of the fireball collective flow via (re)combination?

ALICE PRL105 (2010) 252302

All charged hadrons
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Elliptic flow

PRL111(2013)162301

arXiv:1212.3304

➢ Measurements at RHIC compatible 
with no flow

➢ LHC data hints towards a non-zero 
flow in semi-central collisions

Inclusive J/ψ

Inclusive J/ψ



17

ψ' production

➢ ψ' is much less bound than J/ψ
➢ Ratio of R

AA
 for different charmonia are less dependent on the charm x-section

➢ Transport and statistical hadronization models can be disentangled !

Transport model: NPA859 114
Statistical model: PLB490 196
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ψ' production

➢ Results available from both ALICE and CMS, but in different kinematical ranges
➢ The results still have large uncertainties
➢ ALICE data seems to exclude a large ψ' enhancement in central collisions

ALICE p
T
<3

CMS p
T
>3

CMS p
T
>6.5
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p - Pb @ 5.02 TeV

E
Pb

=1.58 A TeV, E
p
=4 TeV

The center-of-mass of the collision is 
shifted by Δy=0.465 towards the proton 
fragmention direction

Pb-p,   -4.46<y<-2.96, L
int

 = 5.8 nb-1

p Pb
(p-going)

Pb p
(Pb-going)

p-Pb,  -1.37<y<0.43, L
int

 = 52 μb-1

           2.03<y< 3.53, L
int

 = 5.0 nb-1

p

p

Pb

Pb
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Inclusive J/ψ vs rapidity

➢ J/ψ is suppressed at mid-rapidity and in the forward direction, 
compatible with energy loss (+shadowing) models

➢ No suppression observed in the backward direction
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Inclusive J/ψ vs p
T

➢ J/ψ is suppressed at mid and forward 
rapidity, except for the highest p

T
 region

➢ R
pPb

 grows with p
T
, consistent with 

expectations from shadowing and energy 
loss calculations

➢ Early CGC calculation overestimate the 
suppression at forward rapidity
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Quantifying CNM effects

➢ Similar Bjorken-x ranges probed for Pb-Pb @ 2.76 TeV and p-Pb @ 5.02 TeV
➢ Assume 2->1 kinematics for the J/ψ production mechanism:

➢ Factorization of shadowing effects: CNM(Pb-Pb) = R
pPb

(y>0) x R
pPb

(y<0)
➢ At low p

T
, (re)combination effects are equal or even larger than the suppression 

effects, when CNM effects are taken into account
➢ A large suppression is observed at forward rapidity and high p

T
, where the CNM 

effects are negligible.
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ψ' at SPS and RHIC
PRL 111 (2013) 202301NA50, EPJ C49 (2007)

➢ ψ' suppressed at SPS in relatively small systems (like S-U), not in p-A
➢ Final state interactions of the formed resonance in the cold nuclear medium

➢ Puzzle?    ψ' suppressed in d-Au at RHIC
➢ No significant differences between J/ψ and ψ' expected at RHIC and LHC 

from CNM effects or formation time
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ψ' at the LHC

➢ Strong ψ' suppression observed in p-Pb at 
both forward and backward rapidities

➢ Not expected from either shadowing or 
energy loss models

arXiv:1405.3796

arXiv:1405.3796

arXiv:1405.3796
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p-Pb event activity

➢ Categorize events based on the 
multiplicity/energy measured with various 
detectors -> proxy to centrality

➢ Caveat: Correlation between multiplicity 
estimators and collision centrality much weaker 
compared to AA collisions -> posible biases!

➢ Assume p-Pb is a superposition of binary NN 
collisions and perform a Glauber fit, as for Pb-Pb

➢ Use the Glauber <N
coll

> to define the nuclear 

modification factor in p-Pb event activity classes
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Charmonia vs event activity

➢ Both J/ψ and ψ' suppression factors seem to be correlated with the event 
activity

➢ ψ' strongly suppressed in events with large ZDC activity
➢ The trend suggests a final state effect
➢ e.g. the pre-resonant state interaction with the comover cloud?                

Ferreiro et al. arXiv: 1411.0549 

➢ What about the J/ψ dependence on event activity?
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Summary
● We presented ALICE results on J/ψ and ψ' production in Pb-Pb and p-Pb collisions

● ALICE results support the (re)combination picture in Pb-Pb:

– Integrated J/ψ RAA in central collisions much higher w.r.t. RHIC results

– The effect is concentrated at low pT 

– The CNM effects estimated in p-Pb even indicate enhancement at low pT

– Indications of non-zero elliptic flow at forward rapidity

● High pT J/ψ at LHC are more suppressed compared to RHIC, as expected due to larger 
energy density of the fireball

● The J/ψ measurements in p-Pb are compatible with shadowing and energy loss 
expectations

● J/ψ suppression in p-Pb also depends on event activity, but the trend is different from 
the one of ψ' at backward rapidity.

● ψ' suppression in p-Pb cannot be explained with shadowing and energy loss effects 
alone. Strong dependence of the suppression on event activity indicative of comover 
interactions?

● Various possible final state effects in p-Pb makes it difficult to rigourously estimate the 
CNM effects applicable to Pb-Pb collisions
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Backup
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J/ψ as a function of p
T

➢ Less suppression observed at low p
T 
(ALICE)

➢ 50% of the J/ψ yield produced via 
(re)combination in transport models

➢ Stronger suppression and centrality 
dependence at high p

T 
(CMS, ALICE)
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J/psi vs event activity



31

J/psi vs pt in event activity categories



32

Charmonium at lower energy experiments

➢ Puzzles:
➢ Observation: Similar suppression 

factor vs centrality observed at 
mid-rapidity at SPS and RHIC.
Explanation: Charmonia created 
from uncorrelated cc pairs during 
fireball evolution or at freeze-out, 
aka (re)combination

➢ Observation: At RHIC, more 
suppression at forward than at 
mid-rapidity
Explanation: (Re)combination and 
shadowing/saturation effects could 
depend on rapidity
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Inclusive J/ψ as a function of p
T

➢ Striking difference between LHC and 
RHIC at low-p

T 

➢ “Smoking gun” for (re)combination ?

➢ Stronger suppression at LHC for 
high-p

T 
J/ψ's

➢ Negligible (re)combination 
expected in this kinematic range 

➢ Higher energy density at LHC at 
play ?
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