Searches for Electroweak SUSY Production with Higgs Bosons

atex

on behalf of the CMS collaboration

DavidMorse

Northeastern

Kruger 2014 Discovery Physics at the LHC

Electroweak SUSY

400

200

600

800

200

Searches for squarks/ gluinos have set strict bounds on strong SUSY

production

Direct electroweak production of charginos / neutralinos has smaller cross sections and lower jet multiplicities

1200

800

1400

1200

1000

1600

1400

Summary of CMS SUSY Results* in SMS frameworl

1000

600

400

ICHEP 2014

1800

Mass scales [GeV]

Electroweak Signatures

2 main models, many final states

–GMSB model with Higgsino NLSP and ~massless G̃ LSP

-Chargino/neutralino co-NLSP with massive $\tilde{\chi}_1^0$ LSP

Discovery of ~125 GeV Higgs Boson provides new SUSY search handle: "higgs tagging"

Here h is lightest SUSY CP-even higgs, which can be SM-like, if other higgs-es are heavy

Northeastern

Kruger 2014 5 December 2014

Channels & Documentation

- Search Channels
 - $h(\gamma\gamma)$ + hadrons. SUS-14-002
 - h(γγ)+leptons. SUS-14-002
 - h(bb)Z(II) SUS-14-002
 - hh→4b SUS-13-022
 - Inclusive multi leptons. . . SUS-13-002 arXiv:1404.5801 accepted by PRD
- hW+MET reinterpretation of SUS-13-017 with addition of $h \rightarrow \gamma \gamma$ channels. SUS-14-002

arXiv:1409.3168 Phys. Rev. D 90 (2014) 092007

> https://twiki.cern.ch/twiki/ bin/viewauth/CMSPublic/ PhysicsResultsSUS14002

All results use 19.5 fb⁻¹ @ \sqrt{s} = 8 TeV

$\gamma\gamma + X$

Northeastern

yy+bb - 2 Higgs Channel

• Targets higgsino model, hh production with h($\gamma\gamma$)h(bb) –Require exactly 2 b-jets in Higgs mass window –Discriminating variable: Higgs $S_T = (\vec{p}_{\gamma 1} + \vec{p}_{\gamma 2})_T + (\vec{p}_{b1} + \vec{p}_{b2})_T$

-SM Higgs contribution negligible

- All channels use identical photon selection and background estimation methods
 - -2 barrel photons, lnl<1.4442
 - -Leading (trailing) photon $E_T>40$ (25)
 - $-\Delta R(\gamma_1, \gamma_2) > 0.5, \Delta \Phi(\gamma_1, \gamma_2) > 0.05$

yy+bb Results

$S_{\rm T}^{\rm h}$ bin (GeV)	SM background	Data	hh events, $m_{\tilde{\chi}_1^0} = 130 \text{GeV}$
0–60	$0.21\substack{+0.28\\-0.21}$	1	0.28 ± 0.03
60–120	$0.95\substack{+0.99\\-0.95}$	2	0.63 ± 0.04
120-180	$0.21\substack{+0.29 \\ -0.21}$	1	0.55 ± 0.04
180-240	0.74 ± 0.38	0	0.53 ± 0.04
>240	$0.42\substack{+0.49\\-0.42}$	1	1.46 ± 0.06

Kruger 2014

Northeastern

γγ+jj

- Targets hV production with $h(\gamma\gamma)W/Z(jj)$
 - –Veto events with ≥1 medium ID b-jet or ≥2 loose ID b-jets
 - -Veto events with ≥1 muon/electron
 - –Require jets in W/Z mass window 65<M_{jj}<120 GeV
 - -MET is discriminating variable

$E_{\rm T}^{\rm miss}$ (GeV)	SM background	Data	hZ events, $m_{\tilde{\chi}_1^0} = 130 \text{GeV}$
0-20	282 ± 15	305	0.76 ± 0.03
20-30	180 ± 10	195	0.71 ± 0.03
30-40	89.0 ± 4.7	105	0.72 ± 0.03
40-60	70.8 ± 5.0	82	1.14 ± 0.04
60-100	12.2 ± 1.9	7	0.87 ± 0.03
>100	0.85 ± 0.61	0	0.37 ± 0.02

Kruger 2014

γγ+Muon

Northeastern

- Targets hh, hZ, hW
- Requires ≤1 b-jet, ≥1 muon

– lepton p_T>15
– ΔR(ℓ,γ)>0.3

• Discriminating variable is transverse mass of lepton and missing energy

$$M_{T} = \sqrt{2E_{T}^{lepton}E_{T}^{miss} \left(1 - \cos\left(\Delta\phi_{lepton, E_{T}^{miss}}\right)\right)}$$

	Muon	Electron sample				
$M_{\rm T}$ (GeV)	SM background	Data	hW events	SM background	Data	hW events
0–30	4.6 ± 1.6	2	1.2 ± 0.1	4.4 ± 1.7	4	0.80 ± 0.06
30-60	2.31 ± 0.99	3	1.5 ± 0.1	3.2 ± 1.2	9	1.0 ± 0.1
60–90	1.59 ± 0.68	0	2.1 ± 0.1	1.44 ± 0.85	4	1.4 ± 0.1
>90	0.35 ± 0.30	1	1.6 ± 0.1	0.96 ± 0.58	1	1.3 ± 0.1

Kruger 2014

yy+Electron

Northeastern

• Targets hh, hZ, hW

- Requires ≤ 1 b-jet, 0 muons, ≥ 1 electron
 - Veto 86<M_{ey}<96 to avoid Z contamination through $e \rightarrow \gamma$ mis-id
- Broad 2.1 σ excess in electron channel
 - Excess events not signal-like (low MET)
 - Many checks to validate robustness of fit and background estimate

Consistent with statistical fluctuation

	Muon	Electron sample				
$M_{\rm T}$ (GeV)	SM background	Data	hW events	SM background	Data	hW events
0–30	4.6 ± 1.6	2	1.2 ± 0.1	4.4 ± 1.7	4	0.80 ± 0.06
30-60	2.31 ± 0.99	3	1.5 ± 0.1	3.2 ± 1.2	9	1.0 ± 0.1
60–90	1.59 ± 0.68	0	2.1 ± 0.1	1.44 ± 0.85	4	1.4 ± 0.1
>90	0.35 ± 0.30	1	1.6 ± 0.1	0.96 ± 0.58	1	1.3 ± 0.1

Kruger 2014

$hh \rightarrow 4b$

- Benefits from largest higgs branching fraction BR(h→bb)≈56%
- Selects exactly 4 or 5 jets, 2 of which have tight b-tags
 - -4 highest b-tag value jets are selected
 - -Double Higgs reconstruction chosen to minimize $|\Delta m_{jj}| \equiv |m_{jj,1}-m_{jj,2}|$
- ALL SM backgrounds (t \overline{t} , single top, Vjets, QCD) estimated with ABCD method
 - –Sidebands in <M_bb>and ΔM_{bb}
 - -Background extrapolated from 2b sample $4b_SIG=\frac{2b_SIG}{2b_SB}4b_SB$

Kruger 2014

$hh \rightarrow 4b$

- Search performed in MET significance S_{MET}
 - Accounts for jet resolution on event by event basis
 - Better rejection of fake MET, discrimination between signal and background
- Data Consistent with background estimate

$\mathcal{S}_{ ext{MET}}$ bin	$\mathcal{S}_{ ext{MET}}$ range	SM background (3b-SIG)	Data (3b-SIG)	SM background (4b-SIG)	Data (4b-SIG)
1	30 - 50	$6.7^{+1.4+1.0}_{-1.1-0.7}$	4	$2.9\substack{+0.8+0.5\\-0.6-0.4}$	4
2	50 - 100	$11.6\substack{+1.9+0.9\\-1.6-0.7}$	15	$4.9\substack{+1.1+1.4\\-0.9-0.9}$	7
3	100 - 150	$2.44\substack{+0.84+0.56\\-0.64-0.35}$	1	$0.59\substack{+0.39+0.09\\-0.26-0.09}$	3
4	> 150	$1.50\substack{+0.82+0.64\\-0.54-0.32}$	0	$0.40\substack{+0.39+0.26\\-0.22-0.10}$	0

Kruger 2014

$hZ \rightarrow 2b2\ell$

- Higgs-tagging: Two most b-like jets in the event must be reconstructed in the Higgs window $100 < m_{bb} < 150$
- Z-tagging: Require exactly 1 e⁺e⁻ or $\mu^+\mu^-$ pair with 81<m_u<101
- Veto 3rd lepton and hadronic taus to avoid overlap with other searches

$hZ \rightarrow 2b2\ell$

- Z+Jets shape estimated using MET template using γ +Jets control sample, normalized to data yield in MET<50
- Flavor symmetric (tt̄, WW, ττ, tW) MET shape template and normalization from eµ sample

Kruger 2014

- Other SM background estimated from simulation
- Data consistent with background estimate

Northeastern

	$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 80 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$
Z+jets bkg	5.7 ± 1.8	2.2 ± 0.9	0.6 ± 0.3
Flavor symmetric	2.4 ± 0.9	1.8 ± 0.7	1.6 ± 0.6
Other SM bkg	0.3 ± 0.2	0.3 ± 0.2	0.2 ± 0.1
Total SM bkg	8.5 ± 2.0	4.3 ± 1.2	2.4 ± 0.7
Data	8	2	0
hZ events			
$m_{\widetilde{\chi}_1^0} = 130 \mathrm{GeV}$	5.4 ± 0.1	3.1 ± 0.1	1.7 ± 0.1
$m_{\tilde{\chi}_1^0} = 150 \mathrm{GeV}$	5.3 ± 0.1	3.3 ± 0.1	2.0 ± 0.1
$m_{\tilde{\chi}_1^0} = 200 \mathrm{GeV}$	4.7 ± 0.1	4.2 ± 0.1	3.3 ± 0.1
$m_{\tilde{\chi}_1^0} = 250 \mathrm{GeV}$	3.5 ± 0.1	3.2 ± 0.1	2.8 ± 0.1

Multilepton & ZZ Searches

• ZZ→2ℓ2j CMS-SUS-13-006 arXiv:1405.7570 Eur. Phys. J. C 74 (2014) 3036

–di-lepton pair and di-jet pair in Z window–MET is discriminating variable

• Multileptons CMS-SUS-13-002 arXiv:1404.5801 accepted by PRD

-Searches with at least 3 leptons, including up to 1 hadronic tau

- –Channels binned in $N_{lep},\,N_{\tau},\,N_{OSSF}$ lepton pairs, $m_{\ell\!\ell},\,N_{b\text{-jets}},\,H_{T},\,MET$
- -tt, di-boson and rare SM backgrounds taken from simulation
- -fake taus, fake electrons, photon conversion backgrounds from data driven methods
- Excess over SM
 background expectation in
 1 channel, local
 significance: 2.6σ
 - Many studies performed, believed to be statistical fluctuation

ortheastern

	N_ℓ	$N_{ au_{ m h}}$	N_{OSSF}	$m_{\ell\ell}$	$E_{\rm T}^{\rm miss}$ (GeV)	SM	Data	hh events,
				range	-	background		$m_{\widetilde{\chi}_1^0} = 150 \mathrm{GeV}$
n	3	0	0		0-50	51 ± 11	53	3.1 ± 0.6
	3	0	0	—	50-100	38 ± 15	35	2.7 ± 0.6
	3	0	1	Below-Z	50-100	130 ± 27	142	7.4 ± 1.6
	3	1	0		50-100	400 ± 150	406	8.0 ± 1.4
	4	0	1	Off-Z	50-100	0.2 ± 0.1	0	0.5 ± 0.2
ea,	4	1	1	Off-Z	0-50	7.5 ± 2.0	15	0.8 ± 0.2
cal	4	1	1	Off-Z	50-100	2.1 ± 0.5	4	0.7 ± 0.2

Interpretations

 Interpretations made in all allowed combinations of di-boson final states

Kruger 2014

Chargino/Neutralino Production

Mass degenerate Chargino/ Neutralino production

hW

Higgsino Production

- GMSB model with higgsino NLSP
- hh final state
- LSP is 1 GeV $\widetilde{\mathsf{G}}$

- This interpretation ^t assumes BR $(\tilde{\chi}_1^0 \rightarrow h + \tilde{G}) = 1$
- Can also move to more general higgsino case...

Northeastern

Kruger 2014 5 December 2014

Higgsino Production

Kruger 2014

Summary

- Electroweak SUSY searches provide an important counterpart to strong production searches
 - Even more so if present strong production bounds are pushed even higher
- New techniques such as higgs-tagging are available
- CMS has performed searches for electroweak production of SUSY in many final states

Outlook

Searching for low rate processes can be like finding a needle in a haystack - or a leopard in the bush. But it can be done!

13TeV searches will extend the reach of these analyses, with signal production outpacing increases in SM backgrounds, especially at high sparticle mass. There is a challenging but exciting time ahead!

Northeastern

Kruger 2014 5 December 2014

BACKUP

Kruger 2014

YY+Lepton MET

yy+Electron Excess

- - -18 events in Higgs tag window vs. 10.0 ± 2.3 predicted from SM background
- Checks performed:
 - –Comparison of $M_{\rm T}$ in upper and lower sidebands to check for SM processes which die off in invariant mass spectrum
 - Upper and lower sidebands show good agreement
 - –Look at MET instead of $\rm M_{T}$
 - Clustered at low values, non-signal like
 - -Tried other fit functions
 - exponential, 3rd/5th order polynomials, Bernstein polynomial all agree within errors
 - –Fit stability
 - Threw 10,000 toys using fit results, then fit resulting distributions to study effect of low statistics on the fit stable within ${\sim}1\sigma$
 - -Variance of sideband ranges to check fit integral stability in both sidebands and Higgs tag window stable within ${\sim}1\sigma$
- Find no evidence that disagreement is caused by experimental method or systematic problem

Multilepton Excess

- Excess seen in one channel
 - -22 data events, background prediction 10.1 ± 2.4 -64 channels total, each with 3 MET bins

Chance of seeing a 2.6σ fluctuation in 64 channels ~50%

\geq 4 leptons	$m_{\ell^+\ell^-}$	$E_{\rm T}^{\rm miss}$	N_{τ_h} :	$= 0, N_{\rm b} = 0$	$N_{\tau_{\rm h}}$:	$=1, N_{\rm b}=0$	$c_{\tau_h} =$	$= 0, N_{\rm b} \ge 1$	N_{τ_h} =	$= 1, N_{\rm b} \ge 1$
$H_{\rm T} > 200 {\rm GeV}$		(GeV)	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
OSSF0	_	(100, ∞)	0	$0.01_{-0.01}^{+0.03}$	0	$0.01\substack{+0.06\\-0.01}$	0	$0.02^{+0.04}_{-0.02}$	0	0.11 ± 0.08
OSSF0	_	(50, 100)	0	$0.00^{+0.02}_{-0.00}$	0	$0.01^{+0.06}_{-0.01}$	0	$0.00^{+0.03}_{-0.00}$	0	0.12 ± 0.07
OSSF0	_	(0, 50)	0	$0.00^{+0.02}_{-0.00}$	0	$0.07_{-0.07}^{+0.10}$	0	$0.00^{+0.02}_{-0.00}$	0	0.02 ± 0.02
OSSF1	Off-Z	(100, ∞)	0	$0.01_{-0.01}^{+0.02}$	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
OSSF1	On-Z	(100, ∞)	1	0.10 ± 0.06	0	0.50 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
OSSF1	Off-Z	(50, 100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
OSSF1	On-Z	(50, 100)	0	0.23 ± 0.11	1	0.70 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
OSSF1	Off-Z	(0, 50)	0	$0.02^{+0.03}_{-0.02}$	0	0.27 ± 0.12	0	$0.03^{+0.04}_{-0.03}$	0	0.31 ± 0.15
OSSF1	On-Z	(0, 50)	0	0.20 ± 0.08	0	1.3 ± 0.5	0	0.06 ± 0.04	1	0.49 ± 0.19
OSSF2	Off-Z	(100, ∞)	0	$0.01^{+0.02}_{-0.01}$	_	_	0	$0.01\substack{+0.06\\-0.01}$	_	_
OSSF2	On-Z	(100, ∞)	1	$0.15_{-0.15}^{+0.16}$	_	_	0	0.34 ± 0.18	_	_
OSSF2	Off-Z	(50, 100)	0	0.03 ± 0.02	_	_	0	0.13 ± 0.09	_	_
OSSF2	On-Z	(50, 100)	0	0.80 ± 0.40	_	_	0	0.36 ± 0.19	_	_
OSSF2	Off-Z	(0, 50)	1	0.27 ± 0.13	—	_	0	0.08 ± 0.05	—	_
OSSF2	On-Z	(0, 50)	5	7.4 ± 3.5	_	_	2	0.80 ± 0.40	_	_
\geq 4 leptons	$m_{\ell^+\ell^-}$	$E_{\rm T}^{\rm miss}$	N_{τ_h} :	$= 0, N_{\rm b} = 0$	N_{τ_h} :	$=1, N_{\rm b}=0$	N_{τ_h} :	$= 0, N_{\rm b} \ge 1$	N_{τ_h} =	$= 1, N_{\rm b} \ge 1$
\geq 4 leptons $H_{\rm T}$ < 200 GeV	$m_{\ell^+\ell^-}$	E ^{miss} (GeV)	$N_{\tau_h} = Obs.$	$= 0, N_{\rm b} = 0$ Exp.	$N_{\tau_h} = Obs.$	$= 1, N_b = 0$ Exp.	$N_{\tau_h} = Obs.$	$= 0, N_{\rm b} \ge 1$ Exp.	$N_{\tau_h} = Obs.$	$= 1, N_b \ge 1$ Exp.
\geq 4 leptons $H_{\rm T} < 200 {\rm GeV}$ OSSF0	<i>m</i> _{ℓ+ℓ} -	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \end{array}$	$N_{\tau_h} = Obs.$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08	$N_{\tau_h} = 0$	$= 1, N_b = 0$ Exp. 0.17 ± 0.10	$N_{\tau_h} = 0$	$= 0, N_{\rm b} \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$	$N_{\tau_h} = Obs.$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04
\geq 4 leptons $H_{\rm T} < 200 {\rm GeV}$ OSSF0 OSSF0	<i>m</i> _{ℓ+ℓ} -	$E_{\rm T}^{\rm miss}$ (GeV) (100, ∞) (50, 100)	$N_{\tau_h} = Obs.$	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$	$N_{\tau_h} = 0$ 0	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33	$N_{\tau_h} = 0$ 0	$= 0, N_{\rm b} \ge 1 \\ {\rm Exp.} \\ 0.03^{+0.04}_{-0.03} \\ 0.00^{+0.02}_{-0.00}$	$N_{\tau_h} = Obs.$	$= 1, N_{b} \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16
$\frac{\geq 4 \text{ leptons}}{H_{\rm T} < 200 \text{ GeV}}$ OSSF0 OSSF0 OSSF0	<i>m</i> _{ℓ+ℓ-}	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \end{array}$	$N_{\tau_h} = Obs.$ 0 0 0	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$	$N_{\tau_h} = 0$ 0 2 1	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3	$N_{\tau_h} = Obs.$ 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.00^{+0.02}_{-0.00}$	$N_{\tau_h} = Obs.$ 0 0 0	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08
$\frac{\geq 4 \text{ leptons}}{H_{\rm T} < 200 \text{ GeV}}$ OSSF0 OSSF0 OSSF0 OSSF1	<i>m</i> _{ℓ+ℓ−}	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \end{array}$		$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04		$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24	$\begin{array}{c} N_{\tau_{\rm h}}:\\ {\rm Obs.} \end{array}$	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$	$\frac{N_{\tau_h}}{Obs.} = \frac{1}{0}$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\rm T} < 200 {\rm GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF1 \\ \hline \end{array}$	<i>m</i> _{ℓ+ℓ−} — — Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \end{array}$	$\begin{array}{c} N_{\tau_h} \\ Obs. \end{array}$	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.01}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18		$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5	$rac{N_{ au_h}}{0}$: 0 0 0 0 1	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$ 0.38 ± 0.20		$= \begin{array}{c} 1, N_b \geq 1 \\ Exp. \\ \hline 0.04 \pm 0.04 \\ 0.28 \pm 0.16 \\ 0.13 \pm 0.08 \\ 0.32 \pm 0.20 \\ 0.21 \pm 0.10 \end{array}$
$\frac{\geq 4 \text{ leptons}}{H_{\rm T} < 200 \text{ GeV}}$ OSSF0 OSSF0 OSSF0 OSSF1 OSSF1 OSSF1	<i>m</i> _{ℓ+ℓ} - — — Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \end{array}$	$N_{ au_h} = Obs.$	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5	$egin{array}{c} N_{ au_h} & : \ Obs. & : \ 0 & : \ 0 & : \ 0 & : \ 0 & : \ 0 & : \ 0 & : \ 0 & : \ 0 & : \ 1 & : \ 0$	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$ 0.38 ± 0.20 0.16 ± 0.08	$N_{\tau_h} = Obs.$ 0 0 0 0 0 0 1	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\rm T} < 200 {\rm GeV} \\ \\ OSSF0 \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF1 \\ OSSF1 \\ OSSF1 \\ OSSF1 \\ OSSF1 \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z Off-Z Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \end{array}$	$egin{array}{c} N_{ au_h} & = \ Obs. \end{array}$	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4 9	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6	$egin{array}{c} N_{ au_h} : \ Obs. \end{array}$	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23	$egin{array}{c} N_{ au_h} & = \ Obs. \end{array}$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\mathrm{T}} < 200 \mathrm{GeV} \\ \\ \text{OSSF0} \\ \text{OSSF0} \\ \\ \text{OSSF0} \\ \\ \text{OSSF1} \\ \\ \text{OSSF1} \\ \\ \text{OSSF1} \\ \\ \\ \text{OSSF1} \\ \\ \\ \text{OSSF1} \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \end{array}$	$N_{\tau_h} = Obs.$	$= 0, N_{b} = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18	$N_{\tau_h} : Obs.$ 0 2 1 3 2 4 9 15	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0	$egin{array}{c} N_{ au_h} : & \ Obs. & \ Obs. & \ 0 & \ 0 & \ 0 & \ 0 & \ 0 & \ 1 & \ 0 & \ 2 & \ 0 $	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.03}$ $0.00^{+0.02}_{-0.00}$ $0.00^{+0.02}_{-0.02}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06	$N_{\tau_h} = 0$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31
$\begin{array}{r} \geq 4 \text{ leptons} \\ H_{\mathrm{T}} < 200 \mathrm{GeV} \\ \\ \text{OSSF0} \\ \text{OSSF0} \\ \\ \text{OSSF0} \\ \\ \text{OSSF1} \\ \\ \text{OSSF1} \\ \\ \text{OSSF1} \\ \\ \\ \text{OSSF1} \\ \\ \\ \text{OSSF1} \\ \\ \\ \\ \text{OSSF1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<i>m</i> _{ℓ+ℓ} - Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (0, 50) \end{array}$	$N_{\tau_h} = Obs.$	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8	$N_{\tau_h} = 0$	$= 1, N_{b} = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10	$N_{ au_h} = 0$	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}$ $0.00^{+0.02}$ $0.00^{+0.02}$ $0.002^{+0.04}$ $0.02^{+0.04}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15	$N_{\tau_h} = Obs.$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{l} \geq 4 \ \text{leptons} \\ H_{T} < 200 \ \text{GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\ \end{array}$	$m_{\ell^+\ell^-}$ — Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (0, 50) \\ (100, \infty) \end{array}$	$N_{T_h} = Obs.$ 0 0 0 0 0 0 1 0 2 2 4 0	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03	$N_{\tau_h} = 0$	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10	$N_{ au_h} = Obs.$	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}$ $0.00^{+0.02}$ $0.00^{+0.02}$ $0.00^{+0.02}$ $0.02^{+0.04}$ $0.02^{+0.04}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15 0.05 ± 0.04	$N_{\tau_h} = Obs.$	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{l} \geq 4 \ \text{leptons} \\ H_{\rm T} < 200 \ \text{GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\ OSSF2 \\ OSSF2 \\ \hline \end{array}$	<i>m</i> _{ℓ+ℓ} - — Off-Z On-Z Off-Z On-Z Off-Z Off-Z Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \end{array}$	$N_{Th} = Obs.$ 0 0 0 0 0 0 1 0 2 2 4 0 0 0	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03 0.34 ± 0.15	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4 9 15 41 	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10 	$N_{ au_h} = Obs.$ 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}$ $0.00^{+0.02}$ $0.00^{+0.02}$ $0.02^{+0.04}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15 0.05 ± 0.04 0.46 ± 0.25	N _{τh} = Obs. = 0 0 0 0 0 0 0 1 0 0 0 2	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{r} \geq 4 \ \text{leptons} \\ H_{\rm T} < 200 \ \text{GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\$	<i>m</i> _{ℓ+ℓ} - — Off-Z On-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \end{array}$	$N_{ au_h} = Obs.$ 0 0 0 0 0 0 1 0 2 4 0 0 2 4 0 0 2	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03 0.34 ± 0.15 0.18 ± 0.13	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4 9 15 41 	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10 	$N_{ au_h} = Obs.$ 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}$ $0.00^{+0.00}$ $0.00^{+0.00}$ $0.02^{+0.04}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15 0.05 ± 0.04 0.46 ± 0.25 $0.02^{+0.03}$	N _{Th} = Obs. = 0 0 0 0 0 0 0 0 0 1 0 0 0 2	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{r} \geq 4 \ \text{leptons} \\ H_{\rm T} < 200 \ \text{GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\$	<i>m</i> _{ℓ+ℓ} - — Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z On-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (50, 100) \\ (50, 100) \end{array}$	$N_{ au_h} = Obs.$ 0 0 0 0 0 0 1 0 2 4 0 0 2 4 0 2 4	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.02}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03 0.34 ± 0.15 0.18 ± 0.13 3.9 ± 2.5	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4 9 15 41 	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10 	$N_{ au_h} = Obs.$ 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.02}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15 0.05 ± 0.04 0.46 ± 0.25 $0.02^{+0.03}_{-0.02}$ 0.50 ± 0.21	N _{Th} = Obs. = 0 0 0 0 0 0 0 0 0 1 0 0 0 2	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47
$\begin{array}{r} \geq 4 \ \text{leptons} \\ H_{\rm T} < 200 \ \text{GeV} \\ \hline \\ OSSF0 \\ OSSF0 \\ OSSF0 \\ OSSF1 \\ OSSF2 \\$	$m_{\ell^+\ell^-}$ — Off-Z On-Z Off-Z On-Z Off-Z On-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z Off-Z	$\begin{array}{c} E_{\rm T}^{\rm miss} \\ ({\rm GeV}) \\ (100, \infty) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (0, 50) \\ (100, \infty) \\ (100, \infty) \\ (100, \infty) \\ (50, 100) \\ (50, 100) \\ (50, 100) \\ (0, 50) \end{array}$	$N_{ au_h} = Obs.$ 0 0 0 0 0 0 1 0 2 4 0 0 2 4 7	$= 0, N_b = 0$ Exp. 0.11 ± 0.08 $0.01^{+0.03}_{-0.01}$ $0.01^{+0.03}_{-0.01}$ 0.06 ± 0.04 0.50 ± 0.18 0.18 ± 0.06 1.2 ± 0.3 0.46 ± 0.18 3.0 ± 0.8 0.04 ± 0.03 0.34 ± 0.15 0.18 ± 0.13 3.9 ± 2.5 8.9 ± 2.4	$N_{\tau_h} = Obs.$ 0 2 1 3 2 4 9 15 41 	$= 1, N_b = 0$ Exp. 0.17 ± 0.10 0.70 ± 0.33 0.7 ± 0.3 0.60 ± 0.24 2.5 ± 0.5 2.1 ± 0.5 9.6 ± 1.6 7.5 ± 2.0 40 ± 10 	$N_{ au_h} = Obs.$ 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1	$= 0, N_b \ge 1$ Exp. $0.03^{+0.04}_{-0.02}$ $0.00^{+0.02}_{-0.00}$ $0.02^{+0.04}_{-0.02}$ 0.38 ± 0.20 0.16 ± 0.08 0.42 ± 0.23 0.09 ± 0.06 0.31 ± 0.15 0.05 ± 0.04 0.46 ± 0.25 $0.02^{+0.03}_{-0.02}$ 0.50 ± 0.21 0.23 ± 0.09	N _{Th} = Obs. = 0 0 0 0 0 0 0 0 0 1 0 0 2	$= 1, N_b \ge 1$ Exp. 0.04 ± 0.04 0.28 ± 0.16 0.13 ± 0.08 0.32 ± 0.20 0.21 ± 0.10 0.45 ± 0.24 0.50 ± 0.16 0.70 ± 0.31 1.50 ± 0.47

Kruger 2014

Individual 2D Higgsino Limits

Kruger 2014