An Overview of the TileCal Upgrade

Robert Reed on behalf of ATLAS TileCal Community

OVERVIEW

- Introduction
- Upgrade Motivation
- Old/New Architecture
- Demonstrator Project
- Summary

Length : 46 m Diameter : 25 m Weight : 7000 t 100 million channels

ATLAS

3km cables Over 4000 members 38 Countries 174 Universities and labs

TILE CALORIMETER

Four logical partitions

- □ EBC, LBC, LBA, EBA
- Measures energies of Hadrons and Jets
- Sandwich of steel absorber and plastic scintillating tiles
- Wavelength Shifting Fibres to PMTs on each side

MOTIVATION FOR UPGRADE

- Phase II in 2023 High Luminosity LHC
- ^{II} Increased designed luminosity by a factor of 5 from 10³⁴cm⁻²s⁻¹
 - More events accepted with current criteria
 - More data generated ~500X
 - Better precision and granularity needed
 - Triggering and event selection

	Present	Phase-II	
Total BW	~165 Gbps	~80 Tbps	
No. Fibres	256	8192	
BW/drawer	640 Mbps	320 Gbps	

MOTIVATION FOR UPGRADE

- Need better radiation tolerance
 - SEE (Single Event Effects)
 - NIEL (Non-Ionizing Energy Loss)
 - TID (Total Ionizing Dose)
- Ageing of components
 (>10 years)
- Simplify and Reduce maintenance needs
- Accessibility for ALARA considerations
 - As low as reasonably achievable

Phase 2 Radiation Tolerance Requirements (Estimate), TileCal HV Opto

Туре	Simulated Dose/ <u>Yr</u>	Simulation Safety Factor	Low Dose Rate Safety Factor	Lot Variation Safety Factor	Total 10 Year Operation
TID	8.13E-01 Gy/yr	1.5	5	4	2.44E+02 Gy
NIEL	7.62E+10 n/cm ² /yr	2	1	4	6.10E+12 n/cm ²
SEE	1.85E+10 p/cm ² /yr	2	1	4	1.47E+12 p/cm ²

CURRENT ARCHITECTURE

Present Architecture

- 3-in-1: shaping, amplification and integrating
 - Trigger sums have 1 GeV energy precision
- Mother board: programming , powering of FE boards
- Digitizer cards: Digitization , pipelines SuperDrawer
- Interface card:
 100 kHz to ROD

Robert Graham Reed

On-detector

Off-detector

PHASE-II ARCHITECTURE

Upgrade Architecture

- Front end board: Three options available
- Main board: Conditioning and digitization
- Daughter board: Format and 40 MHz to sROD
- sROD: Pipeline, LOA
 - **Digital Precision** at tile cell energy reconstruction

Robert Graham Reed

MINI-DRAWERS

- Super drawer splits into 4 mini-drawers
 - Improves operation, maintainability and handling
 - Internal cooling
 - Cable carrier for easier insertion/extraction

Each draw has:

- 12 Photo Multiplier Tubes (PMTs) connected to 12 front end boards
- 1 Main Board + 1 Daughter Board
- 1 HV regulation board
- 1 Adder base board + 3 adder cards (demonstrator only)

Kruger2014

Robert Graham Reed

ARCHITECTURE COMPARISON

Present Architecture

Phase-II Architecture

TILE DEMONSTRATOR PROJECT

Test bench at CERN containing demonstrator proto-type

Mobile unit to test and consolidate new front end electronics

Robert Graham Reed

TILE DEMONSTRATOR PROJECT

- Evaluation and qualification of the technology before the complete replacement associated electronics
- Similar as possible to Phase-II with backward compatibility (analog trigger = 3-in-1 FEB)
- Hybrid of the current and future architectures
- Provide analog and digital triggers
- Planned insertion in TileCal in 2015/2016 shutdown

FRONT END BOARDS

Modified 3-in-1

- Receive and shape
 - Provides analog outputs (2 gains)
 - Charge injection
 - Integrator
- Based on current
 3-in-1 cards
 - Commercial off the shelf
- □ Improved
 - Radiation tolerance
 - Noise performance
 - Linearity performance

Robert Graham Reed

QIE ASIC

- Charge Integrator from Fermilab
- Different approach
 - Current splitter
 - Gated integrator
- Four different gains, but without shaping
 - No dead time
 - Useful for pile-up
- 17-bit dynamic range
- Clean measurement every 25 ns (40MHz)

FATALIC

- Combines two ASIC solutions (TACTIC and FATALIC)
- □ FATALIC
 - Shaping stage with
 3 gain ranges
 (1,8,64)
- □ TACTIC
 - 12-bit pipelined ADC
 - 40 MHz operations

12

MAINBOARD

MB-1 (Modified 3-in-1) \Box

- Digital control of 3-in-1 with 4 FPGAs
- Digitization and transmission to Daughter Board via FMC connector
- Redundant design (all levels)
- MB-2 and MB-3 (QIE & FATALIC) \Box
 - Minor modification from MB-1
 - No ADCs needed

PMT

0

sROD Signal Reco

DAUGHTER BOARD

- High speed communication with back-end electronics
 - Formats and transmits read out and Detector Control System (DCS) data
 - Receives configuration and control commands from DCS
 - Configurable via optical link
- Complete two fold redundancy
- Temperature tests done

HIGH VOLTAGE BOARD

- Two solutions available
 - Local or Remote
- Local (HVOpto) chosen for demonstrator
 - Remote still under investigation for Phase-II
- HV fully controlled by daughter board
- Redundancy plane

Kruger2014

sROD PIPELINE

POWER DISTRIBUTION

- Three stage power distribution
 - Bulk 200 V_{DC} (Off detector)
 - Low Voltage Power Supplies in front end detector
 - 8 separate units providing +10V
 - Powers half a mini-drawer but can power entire drawer if needed
 - Point of load regulators
 - Each component has dedicated power lines

Kruger2014

sROD PIPELINE

0

OPTICAL LINKS

- B fibres per super drawer
 - (1+1) x4 mini drawer
- Two links considered:
- Vertical Cavity Surface Emitting Lasers (VCSEL)
 - Qualified at ~10 Gbps per link with error ratio ~ 10^{-12} which is ~900 errors / day
 - Increased bandwidth = increased problems
- Quad Small Form-factor Pluggable (QSFP+)
 - Qualified at ~40 Gbps (4X10) with error ratio of 10⁻¹⁸ which is ~1 error in 1000 days
 - PIC microcontroller used for configuration and monitoring of QSFP
 - Used in demonstrator

PIC Microcontroller

PIC Replacement Board

SROD DEMONSTRATOR

- Main interface for front-end to triggering system
 - Completely digital means better resolution
- Main functionality
 - Main data read out
 - Trigger and Timing Control distribution
 - DCS commands to front-end
- Reads out of 4 mini-drawers
- Designed for new back end infrastructure

BACK END INFRASTRUCTURE

The ATCAs will house the back end electronics

sROD

ATCA Chassis

Pioneered the integration of ATCAs into the ATLAS DCS with a new framework tool

Control and monitor chassis and all components through Simple Network Management Protocol

Kruger2014

ATCA location for off detector electronics in the ATLAS cavern

Robert Graham Reed

RADIATION TESTS

- □ 3-in-1
 - Sensitive analog switch replaced
- Mainboard:
 - Large number of components tested. Still need to test FPGAs
- Daughter board:
 - Internal Scrubbing and external partial reconfiguration for memory
 - Triple Mode Redundancy will catch errors in distributed memory
- □ HVOpto:
 - Tested for TID, SEE, NIEL (OK)
- □ LVPS
 - Same parts as current design
 - Must test at higher energies
- COTS Regulators
 - Tested for TID (-5V tests needed)
- □ QSFPs
 - Some SEUs but no failures

SUMMARY

- Upgrade of Tile Calorimeter for HL-LHC is progressing well
 - Positive ATLAS review
 - Complete redesign of the front and back end electronics
- Still some alternative solutions that will be tested
 - Extensive evaluation and system calibration in Building 175
- Test beams begin 2015 to 2016
- Early insertion scheduled for 2015/2016 in next detector opening

Questions

Robert Reed on behalf of ATLAS TileCal Community

Back Up

Robert Reed on behalf of ATLAS TileCal Community

3-IN-1 RESULTS

- Design based on the original 3-in-1 cards
 - Discrete COTS components
- Selected for the Demonstrator project
 - Unique option which can provide analog output to the Level-1 trigger
- Reception and shaping of PMT signals
 - Fast signal processing
 - 7 pole LC shape: 50 ns FWHM shaping time
 - Bi-gain readout: gain ratio of 16
 - Digitization in Main Boards using 12-bit ADC
 - Slow signal processing
 - Integrator to read out Cesium calibration data
 - Charge injection calibration and controls
- Better linearity and lower noise than previous version
- Status:
 - Prototype tested using COTS components
 - Passed radiation tests

Kruger2014

24

QIE

- Charge (Q) Integrator and Encoder (QIE) chip from Fermilab
- Current splitter with multiple ranges and gated integrator with on-board flash ADC
 - Needs 4 clock cycles to acquire data
 - 40 MHz operation
 - 17 bit dynamic range in 10 bits
 - 6 bit ADC value
 - 2 bit range (4 different gain ranges)
 - 2 bits CAPID
- Dead-timeless digitization
 - No pulse shaping
- Also includes
 - Charge injection for calibration
 - Integrator for calibration with source
- □ Status:
 - 20 chips in hand, another 40 coming
 - Passed noise, dynamic response and TDC tests
 - TID test up to 50 kRad showed good results
 - No Single Event Upsets in Shadow Register up to $6 \cdot 10^{12} \text{ p/cm}^2$

FATALIC

- Combined ASIC solution: FATALIC
 3 + TACTIC
 - FATALIC 4 will include both ASICs
 - IBM CMOS 130 nm technology
- **FATALIC 3 main features:**
 - Current conveyor
 - Shaping stage with 3 different gain ratios (1, 8, 64)
 - 80 MHz operation
- **TACTIC ADC main features:**
 - 12-bit pipelined ADC
 - 40 MHz operation
- Status:
 - First prototypes of FATALIC 1 and 2 validated
 - Testing FATALIC version 3
 - Designing second version of TACTIC

Conceptual Design of FE-ASIC Front-End Board

TACTIC ADC v1

ADC OPERATION TESTS

Simple operations of FADC read-out to test alignment

A. Valero

Robert Graham Reed