Vector-like multiplets, mixings and the LHC

Aldo Deandrea

IPNL, Université Lyon 1 & Institut Universitaire de France

T4

Kruger 2014 - December 1st 2014

Outline

- Motivations
- Mixing structures
- Bounds (tree and loop level)
- Model independent framework
- Conclusions

Based on : ArXiv:1007.2933 JHEP1011 (2010) 159 ArXiv:1108.6329 JHEP 1203 (2012) 070 ArXiv:1305.4172 Nucl. Phys. B876 (2013) 376 ArXiv: in preparation

Thanks to all my collaborators on this topic: M.Buchkremer, G.Cacciapaglia, N.Gaur, D.Harada, Y.Okada, L.Panizzi.

What is a vector-like fermion?

• VL currents are vectorial (like in QED), so left and right chiralities couple with the same strength

$$J^{\mu} = \bar{\Psi}\gamma^{\mu}\Psi = \bar{\Psi}_{L}\gamma^{\mu}\Psi_{L} + \bar{\Psi}_{R}\gamma^{\mu}\Psi_{R} = J_{L}^{\mu} + J_{R}^{\mu}$$

 gauge invariant mass terms independent of the Higgs mechanism are allowed and give a new scale M (L and R are in the same representation)

$$M\bar{\Psi}\Psi = M(\bar{\Psi}_L\Psi_R + \bar{\Psi}_R\Psi_L)$$

• Coupling to SM fermions and Higgs via Yukawa-type interactions

Where and why (VL quarks)?

- top partners are expected in many extensions of the SM (composite/Little higgs models, Xdim models)
- they come in complete multiplets (not just singlets)
- theoretical expectation is a not too heavy mass scale M ($_{\rm }{\rm VEV}$) and mainly coupling to the 3rd generation
- Present LHC mass bounds \sim 700 GeV
- Mixings bounded by EWPT, flavour...(more on this later)

Simplest multiplets (and SM quantum numbers)

	SM	Singlets	Doublets	Triplets
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t') (b')	$\begin{vmatrix} \begin{pmatrix} X \\ t' \end{pmatrix} & \begin{pmatrix} t' \\ b' \end{pmatrix} & \begin{pmatrix} b' \\ Y \end{pmatrix} \end{vmatrix}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2	1	2	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	1/6 7/6 -5/6	2/3 -1/3
\mathcal{L}_Y	$-\frac{\frac{y_u^i v}{\sqrt{2}} \overline{u}_L^i u_R^i}{-\frac{y_d^i v}{\sqrt{2}} \overline{d}_L^i V_{CKM}^{i,j} d_R^j}$	$-\frac{\lambda_{u}^{i}v}{\sqrt{2}}\overline{u}_{L}^{i}U_{R}\\-\frac{\lambda_{d}^{i}v}{\sqrt{2}}\overline{d}_{L}^{i}D_{R}$	$-\frac{\lambda_{\mu\nu}^{i}}{\sqrt{2}}U_{L}u_{R}^{i}\\-\frac{\lambda_{d\nu}^{i}}{\sqrt{2}}D_{L}d_{R}^{i}$	$-\frac{\lambda_i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\lambda_i v \bar{d}_L^i D_R$
\mathcal{L}_m		$-Mar{\psi}\psi$	(gauge invariant sinc	e vector-like)
Free parameters		$\frac{4}{M+3\times\lambda^i}$	$\begin{vmatrix} 4 \text{ or } 7 \\ M + 3\lambda_u^i + 3\lambda_d^i \end{vmatrix}$	$\overset{4}{M+3\times\lambda^{i}}$

Embeddings in $SU(2)_{L} \times U(1)_{Y}$

Complete list of vector-like multiplets forming mixed Yukawa terms with the SM quark representations and a SM or SMlike Higgs boson doublet

ψ	$(SU(2)_L, U(1)_Y)$	T_3	Q_{EM}
U	(1, 2/3)	0	+2/3
D	(1, -1/3)	0	-1/3
$\left(X^{8/3}\right)$		+2	+8/3
$X^{5/3}$	(3 ,5/3)	+1	+5/3
$\left(\begin{array}{c} U \end{array} \right)$		0	+2/3
$\left(X^{5/3}\right)$		+1	+5/3
U	$({f 3},2/3)$	0	+2/3
$\left(\begin{array}{c} D \end{array} \right)$		-1	-1/3
$\left(\begin{array}{c} U \end{array}\right)$		+1	+2/3
D	(3, -1/3)	0	-1/3
$\left(\left(Y^{-4/3} \right) \right)$		-1	-4/3

ψ	$(SU(2)_L, U(1)_Y)$	T_3	Q_{EM}
$\left(U \right)$	(2, 1/6)	+1/2	+2/3
$\left \left(D \right) \right $		-1/2	-1/3
$\left(X^{5/3}\right)$	(2,7/6)	+1/2	+5/3
$\left(\begin{array}{c} U \end{array} \right)$		-1/2	+2/3
$\left(\begin{array}{c} D \end{array}\right)$	(2, -5/6)	+1/2	-1/3
$\left(Y^{-4/3} \right)$		-1/2	-4/3
$\left(X^{8/3}\right)$	(4,7/6)	+3/2	+8/3
$X^{5/3}$		+1/2	+5/3
		-1/2	+2/3
$\left(\begin{array}{c} D \end{array} \right)$		-3/2	-1/3
$\left(X^{5/3} \right)$	(4, 1/6)	+3/2	+5/3
		+1/2	+2/3
		-1/2	-1/3
$\left(Y^{-4/3} \right)$		-3/2	-4/3
	(4, -5/6)	+3/2	+2/3
		+1/2	-1/3
$Y^{-4/3}$		-1/2	-4/3
$\left \left\langle Y^{-7/3} \right\rangle \right $		-3/2	-7/3

Sample effective Lagrangian

Lagrangian with the extra vector-like fermion $\psi = (X U)$

$$\mathcal{L}_{m} = -\left(\bar{Q}_{L}^{1} \ \bar{Q}_{L}^{2} \ \bar{Q}_{L}^{3}\right) \tilde{V}_{CKM} \begin{pmatrix} y_{d} \\ y_{s} \\ y_{b} \end{pmatrix} H \begin{pmatrix} d_{R} \\ s_{R} \\ b_{R} \end{pmatrix}$$
$$-\left(\bar{Q}_{L}^{1} \ \bar{Q}_{L}^{2} \ \bar{Q}_{L}^{3}\right) \begin{pmatrix} y_{u} \\ y_{c} \\ y_{t} \end{pmatrix} H^{c} \begin{pmatrix} u_{r} \\ c_{R} \\ t_{R} \end{pmatrix}$$
$$-\left(\lambda_{1} \ \lambda_{2} \ \lambda_{3}\right) \bar{\psi}_{L} H \begin{pmatrix} u_{R} \\ c_{R} \\ t_{R} \end{pmatrix} - M(\bar{U}_{L}U_{R} + \bar{X}_{L}X_{R})$$

SM Yukawa for down-type quarks \tilde{V}_{CKM} is the modified V_{CKM} due to the presence of ψ

SM Yukawa for up-type quarks

 ψ mass and mixing with SM quarks

Mass matrices after the Higgs develops a VEV

$$\mathcal{L}_{m} = -\left(\bar{d}_{L}\ \bar{s}_{L}\ \bar{b}_{L}\right)\widetilde{V}_{CKM}\begin{pmatrix}\tilde{m}_{d}\\ \tilde{m}_{s}\\ m_{b}\end{pmatrix}\begin{pmatrix}d_{R}\\ s_{R}\\ b_{R}\end{pmatrix}$$
$$-\left(\bar{u}_{L}\ \bar{c}_{L}\ \bar{t}_{L}\ \bar{U}_{L}\right)\begin{pmatrix}\tilde{m}_{u}\\ \tilde{m}_{c}\\ m_{t}\\ x_{1}\ x_{2}\ x_{3}\ M\end{pmatrix}\begin{pmatrix}u_{R}\\ c_{R}\\ t_{R}\\ U_{R}\end{pmatrix}$$

down-type quark masses $ilde{m}_i \equiv rac{y_i v}{\sqrt{2}} = m_i^{SM}$

mass matrix for up-type quarks the heavy U induces the mixing $x_i = \frac{\lambda^{i_v}}{\sqrt{2}}$

 $-M \bar{X}_L X_R$

X mass

Simplified Mixing effects (t-T sector only)

- Yukawa coupling generates a mixing between the new state(s) and the SM ones
- Type 1 : singlet and triplets couple to SM L-doublet
 - Singlet $\psi = (1, 2/3) = U$: only a top partner is present
 - triplet ψ = (3, 2/3) = {X, U, D}, the new fermion contains a partner for both top and bottom, plus X with charge 5/3
 - triplet ψ = (3, -1/3) = {U, D, Y}, the new fermions are a partner for both top and bottom, plus Y with charge -4/3

$$\mathcal{L}_{\text{mass}} = -\frac{y_u v}{\sqrt{2}} \bar{u}_L u_R - x \, \bar{u}_L U_R - M \, \bar{U}_L U_R + h.c.$$

$$\begin{pmatrix} \cos \theta_u^L & -\sin \theta_u^L \\ \sin \theta_u^L & \cos \theta_u^L \end{pmatrix} \begin{pmatrix} \frac{y_u v}{\sqrt{2}} & x \\ 0 & M \end{pmatrix} \begin{pmatrix} \cos \theta_u^R & \sin \theta_u^R \\ -\sin \theta_u^R & \cos \theta_u^R \end{pmatrix}$$

Simplified Mixing effects (t-T sector only)

- Type 2 : new doublets couple to SM R-singlet
- SM doublet case $\psi = (2, 1/6) = \{U, D\}$, the vector-like fermions are a top and bottom partners
- non-SM doublets ψ = (2, 7/6) = {X, U}, the vector-like fermions are a top partner and a fermion X with charge 5/3
- non-SM doublets $\psi = (2, -5/6) = \{D,Y\}$, the vector-like fermions are a bottom partner and a fermion Y with charge -4/3

$$\mathcal{L}_{\text{mass}} = -\frac{y_u v}{\sqrt{2}} \bar{u}_L u_R - x \bar{U}_L u_R - M \bar{U}_L U_R + h.c.$$

$$\begin{pmatrix} \cos \theta_u^L & -\sin \theta_u^L \\ \sin \theta_u^L & \cos \theta_u^L \end{pmatrix} \begin{pmatrix} \frac{y_u v}{\sqrt{2}} & 0 \\ x & M \end{pmatrix} \begin{pmatrix} \cos \theta_u^R & \sin \theta_u^R \\ -\sin \theta_u^R & \cos \theta_u^R \end{pmatrix}$$

Mixing 1VLQ (doublet) with the 3 SM generations

$$M_u = \begin{pmatrix} \tilde{m}_u & & \\ & \tilde{m}_c & \\ & & \tilde{m}_t & \\ & x_1 & x_2 & x_3 & M \end{pmatrix} = V_L \cdot \begin{pmatrix} m_u & & & \\ & m_c & & \\ & & m_t & \\ & & & M \end{pmatrix} \cdot V_R^{\dagger}$$

$$V_L \implies M_u \cdot M_u^{\dagger} = \begin{pmatrix} \tilde{m}_u^2 & x_1^* \tilde{m}_u^2 \\ \tilde{m}_c^2 & x_2^* \tilde{m}_c^2 \\ & \tilde{m}_t^2 & x_3 \tilde{m}_t^2 \\ x_1 \tilde{m}_u & x_2 \tilde{m}_c & x_3 \tilde{m}_t & |x_1|^2 + |x_2|^2 + x_3^2 + M^2 \end{pmatrix} \quad \frac{m_q \propto \tilde{m}_q}{\text{mixing is suppressed}}$$

$$V_R \implies M_u^{\dagger} \cdot M_u = \begin{pmatrix} \tilde{m}_u^2 + |x_1|^2 & x_1^* x_2 & x_1^* x_3 & x_1^* M \\ x_2^* x_1 & \tilde{m}_c^2 + |x_2|^2 & x_2^* x_3 & x_2^* M \\ x_3 x_1 & x_3 x_2 & \tilde{m}_t^2 + x_3^2 & x_3 M \\ x_1 M & x_2 M & x_3 M & M^2 \end{pmatrix}$$

mixing in the right sector present also for $\tilde{m}_q \rightarrow 0$

flavour constraints for q_R are relevant

Mixing with more VL multiplets

semi-integer isospin multiplets

Mixing structure

- nd × 3 matrix y of the Yukawa couplings of the VL doublets (semi-integer isospin)
- 3×ns matrix x of the Yukawa couplings of the VL singlets/triplets (integer isospin)
- M_{Ω} are the VL masses of the new representations
- nd × ns matrix ω and ns × nd matrix ω' contain the Yukawa couplings among VL representations
- ω' couplings correspond to the "wrong" (opposite) chirality configuration with respect to SM Yukawa couplings

Bounds

- Tree-level bounds
 - FCNC effects at tree level due to mixing
 - W \rightarrow t b, ~ +/-20% variation still allowed (TeVatron data)
 - Z → b b +1% → -0.2% in the left coupling and +20% → -5% in the right coupling (L and R are correlated)
 - Atomic parity violation (weak charge affected by FCNC of $Z \rightarrow$ light quarks)
- Loop level bounds
 - new particles are expected in the loops (not only the new heavy fermions)
 - FCNC effects at loop level
 - Precision EW tests with the S and T parameters, but other new particle may affect the result

Tree level bounds

Rare top decays (induced by mixing)

$$\frac{\Gamma(t \to Zu) + \Gamma(t \to Zc)}{\Gamma(t \to Wb)} < 0.34\% \qquad \begin{array}{c} \text{measured at} \\ \text{CMS @ } 4.6\,fb^{-1} \end{array}$$

implies :

 $|V_R^{t't}| \sqrt{|V_R^{t'u}|^2 + |V_R^{t'c}|^2} < 0.08 |V_{tb}|$

• Z \rightarrow cc coupling from LEP

 $\begin{array}{ll} g^c_{ZL} = & 0.3453 \pm 0.0036 \\ g^c_{ZR} = -0.1580 \pm 0.0051 \end{array}$

implies :

$$|V_R^{t'c}| < 0.2$$

Weak charge of nuclei

• Atomic parity violation, weak charge :

$$Q_W = \frac{2c_W}{g} \left[(2Z + N)(g_{ZL}^u + g_{ZR}^u) + (Z + 2N)(g_{ZL}^d + g_{ZR}^d) \right]$$
for Cesium:

$$Q_W(^{133}\text{Cs})|_{exp} = -73.20 \pm 0.35$$
 $Q_W(^{133}\text{Cs})|_{SM} = -73.15 \pm 0.02$

• at 3 sigmas this implies :

 $\delta Q_W = -(2Z+N)|V_R^{t'u}|^2$

 $|V_R^{t'u}| < 7.8 \times 10^{-2}$

FCNC tree level in up sector

• D-Dbar mixing and $D \rightarrow I^+I^-$:

• strongest bound from xD :

$$x_D = \frac{\Delta m_D}{\Gamma_D} = 0.0100^{+0.0024}_{-0.0026}$$

 $(g_{ZR}^{uc})^2 = \frac{\pi\alpha}{c_W^2 s_W^2} |V_R^{t'u}|^2 |V_R^{t'c}|^2 \implies |V_R^{t'u}| |V_R^{t'c}| < 3.2 \times 10^{-4} \quad @3\sigma$

EW vs tree level (Sing. Y = 2/3, Doublet Y = 1/6)

Pair production

Pair production for t' of the non-SM doublet $pp \rightarrow t' t @ LHC$

Single production

Single production

Non-SM doublet single t' production cross section as function of the t' mass

t' decays

Decay modes never 100% in one channel, in the limit of the equivalence theorem, dictated by the multiplet representation :

ť	Wb	Zt	ht
Singlet, Triplet Y=2/3	50%	25%	25%
Doublet, Triplet Y=-1/3	~0%	50%	50%

T' decays

Assuming for example $\kappa = 0.1$ and RL =50% cross-sections are ~500 fb for t' in singlet or non-standard doublet and ~200 fb for t' in standard doublet Production in association with light quarks is ~ 90% See table 8 of ArXiv:1305.4172

T' decays (X^{5/3},T') multiplet

Mixing mostly with top V_R^{41} maximal

Mixing mostly with top V_R⁴² maximal

In all cases T' \rightarrow bW NOT dominant for allowed masses

X^{5/3} production

X^{5/3} production

X^{5/3}decays (X^{5/3},T') multiplet

Mixing mostly with top V_R⁴¹ maximal

Mixing mostly with top V_R⁴² maximal

General parameterisation (example with a t')

- T' will in general couple with Wq, Zq, hq
- it is more physical to consider observables (BRs, cross-sections) rather than Lagrangian parameters
- Neglect SM quark masses here (full case in the paper)

$$BR(T \to Vq_i) = \underbrace{\frac{\kappa_V^2 (V_{L/R}^{4i}|^2) \Gamma_V^0}{(\sum_{j=1}^3 |V_{L/R}^{4j}|^2) (\sum_{V'=W,Z,H} \kappa_{V'}^2 \Gamma_{V'}^0)} \\ \zeta_i = \frac{|V_{L/R}^{4i}|^2}{\sum_{j=1}^3 |V_{L/R}^{4j}|^2}, \quad \sum_{i=1}^3 \zeta_i = 1, \\ \mathcal{E}_V = \frac{\kappa_V^2 \Gamma_V^0}{\sum_{V'=W,Z,H} \kappa_{V'}^2 \Gamma_{V'}^0}, \quad \sum_{V=W,Z,H} \xi_V = 1; \\ \zeta_{jet} = \zeta_1 + \zeta_2 = 1 - \zeta_3$$

- Only 5 independent parameters, M, $\xi_{W}^{},\,\xi_{Z}^{},\,\zeta jet$, κ
- Choosing multiplet fixes $\boldsymbol{\xi}_W^{},\,\boldsymbol{\xi}_Z^{}$

General parameterisation

Complete Lagrangian

$$\begin{split} \mathcal{L} &= \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{T}_L W_\mu^+ \gamma^\mu d_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{T}_L Z_\mu \gamma^\mu u_L^i \right] \right. \\ & \left. - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_W^0}} \frac{M}{v} \left[\bar{T}_R H u_L^i \right] - \sqrt{\frac{\zeta_3 \xi_H^T}{\Gamma_H^0}} \frac{m_t}{v} \left[\bar{T}_L H t_R \right] \right\} \\ & \left. + \kappa_B \left\{ \sqrt{\frac{\zeta_i \xi_W^B}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{B}_L W_\mu^- \gamma^\mu u_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^B}{\Gamma_Z^0}} \frac{g}{2c_W} \left[\bar{B}_L Z_\mu \gamma^\mu d_L^i \right] - \sqrt{\frac{\zeta_i \xi_H^B}{\Gamma_W^0}} \frac{M}{v} \left[\bar{B}_R H d_L^i \right] \right\} \\ & \left. + \kappa_X \left\{ \sqrt{\frac{\zeta_i}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{X}_L W_\mu^+ \gamma^\mu u_L^i \right] \right\} + \kappa_Y \left\{ \sqrt{\frac{\zeta_i}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[\bar{Y}_L W_\mu^- \gamma^\mu d_L^i \right] \right\} + h.c. \,, \end{split}$$

Parameters: Mass + 4 (for T and B) or + 2 (for X and Y)

Parameterisation: Montecarlo simulations

- General FeynRules model and MadGraph/CalcHep implementation:
- <u>http://feynrules.irmp.ucl.ac.be/wiki/VLQ</u>
- Specific multiplets (3 parameters)
- <u>http://feynrules.irmp.ucl.ac.be/wiki/VLQ_tsingletvl</u>
- <u>http://feynrules.irmp.ucl.ac.be/wiki/VLQ_tbdoubletvl</u>
- <u>http://feynrules.irmp.ucl.ac.be/wiki/VLQ_xtdoubletvl</u>
- M mass of the VL quarks in the multiplet, g* coupling strength for single production, $R_{\rm L}$ fraction of decay to light quarks

XQCAT (data recasting)

• Tool to recast LHC analyses for vector-like quarks (see hep-ph/1409.3116)

Analysis tool example

Blue, purple, red correspond to $RL = 0, 0.5, \infty$ respectively. Obtained combining SUSY CMS searches (α_T , monolepton, OS dileptons, SS dileptons)

Conclusions

- Heavy vector-like fermions are present in many extensions of the SM
- Present constraints can be improved, especially for realistic cases, beyond too simplified assumptions
- Flavour results are helpful to establish the allowed range of mixings
- LHC run 2 can produce or bound these particles to a level giving a real feedback on new physics scenarios to theorists, detailed and reproducible steps for data recasting are essential in exp. papers!
- Present bounds just start probing the interesting mass range for VL relevant in BSM model building
- A general parameterisation, useful for LHC searches is available and an analysis tool will be available for public use