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Brief introduction

The discovery of a scalar particle of mass mh ∼ 126 GeV in
2012, consistent with the SM Higgs boson

One-loop Higgs mass is given by
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(126GeV )2 = (91GeV )2 + (81GeV )2

MSSM implies either heavy stops or large Xt = At − µ cotβ
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5D MSSM models

We define the 5D MSSM to be a field theory on 4D
space-time, times an interval of length R in which the gauge
fields and the Higgses (Hu,Hd) propagate into the fifth
dimension and SM matter fields restricted to the y = 0 brane

The compactifications produce a towers of new particle states
for MSSM particle in 4D theory at Q > 1/R

No contribution from Kaluza-Klein excited states of the
fermions on the brane

We make use of RGEs
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RGEs for 5D MSSM

The one loop beta function for the gauge couplings and gaugino
soft masses if t > log (1/R) / log (10) are given by
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3
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where
S(t) = (mZR)e

t(log(10)−log(mZ )),
bi4D = (33/5, 1,−3),
bi5D = (6/5,−2,−6).
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Yukawa couplings

The five dimensional contribution are given by

βYu
= Yu

[

(

6Y †
uYu + 2Y †

d
Yd

)

−

(

34

30
g2
1 +

9

2
g2
2 +

32

3
g2
3

)]

βYd
= Yd

[

(6Y †
d
Yd + 2Y †

uYu)−

(

19

30
g2
1 +

9

2
g2
2 +

32

3
g2
3

)]

βYe
= Ye

[

6Y †
e Ye −

(

33

10
g2
1 +

9

2
g2
2

)]

.



Large At Without the Desert

Trilinear soft breaking parameters

In the 5D MSSM these are given by:
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Regarding the breaking of SUSY. We do, however, make some
minimal specifications:

We take as inputs the Yukawa and gauge couplings at the
SUSY scale, 1 TeV.

We will assume SUSY breaking occurs at the unification scale,
which is found by finding the scale at which g1 = g2.

We specify the value of the gluino mass, M3 at 1 TeV.

We take the trilinear soft breaking terms, Au/d/e , to vanish at
the unification scale.
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Results and Discussions
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Compactification scale 105 TeV

The key feature is that with a larger compactification radius the
unification scale can be significantly lowered, lowering the desert of
scales between the EW scale and unification.
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We also specify the Yukawa coupling RGEs boundary conditions at
1 TeV, which interestingly appears to vanish when evolved to the
unification scale
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We see that by increasing the compactificaton radius one can
increase the size of the trilinear soft breaking term.
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Here we show that after a reasonable period of RG evolution the
At mimics the magnitude of the gluino mass, at 1/R ∼ 10 TeV,
such that at low scales |At | ∼ M3.
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A plot of the one loop Higgs mass versus the lightest stop mass for
representative values of Xt = At − µ cotβ.
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A plot of the one loop Higgs mass versus tanβ for different values
of the stop mass, for Xt = At − µ cotβ of −500 GeV (left panel)
and −1.5 TeV (right panel).
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Conclusions

We have explored how 5D extension of the MSSM may
generate large At to achieve the observed Higgs mass and
have sub-TeV stops, perhaps observable at the LHC.

We computed the full one-loop RGEs for all supersymmetric
and soft breaking parameters.

We find that Yukawa couplings may be made to unify and
approximately vanish at the unification scale.

We find that the magnitude of At follows closely that of the
magnitude of M3 and increases as the compactification scale
decreases.
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