Fundamental Composite Higgs Dynamics

Giacomo Cacciapaglia (Lyon, France)

Kruger 2014, parallel I Kruger park, 1 Dec. 2014

> Based on G.C., F.Sannino 1402.0233 and work in progress with H.Cai, M.Lespinasse, A.Deandrea, Seung J. Lee, T.Flacke, F.Sannino and the CP3–Origins group

Why do we need BSM?

The Higgs boson has been discovered.

The Standard Model is now complete!

The discovery of the Higgs boson has brought the <u>Naturalness problem</u> to reality!

Ian MacNicol / AFP - Getty Images

Why do we need BSM?

The discovery of the Higgs boson has brought the <u>Naturalness problem</u> to reality!

 $\bigcirc \cdots \clubsuit \qquad \delta m_H^2 \sim \frac{g^2}{16\pi^2} M_{\rm NPh}^2$

Why do we need BSM?

The discovery of the Higgs boson has brought the <u>Naturalness problem</u> to reality!

 $\int h \delta m_H^2 \sim \frac{g^2}{16\pi^2} M_{\rm NPh}^2$

Either we live with fine tuning...

... or there is New Physics

at/around the TeV scale!

The picture after LHC 8TeV The hard reality: Theorist Standard Model backgrounds...

Standard Model backgrounds everywhere!

Standard Model all the way up? The TeV scale is a qualitative argument. And, BSM signals may be not so easy to spot!

Naturalness wiki-how:

how to stabilise the Higgs?

Give it spin:

Supersymmetry: associate it to fermions!

Part of a gauge field in extra dimensions (Gauge-Higgs U.)

Set its mass to zero:

- Link it to a spontaneous symmetry breaking: pNGB Higgs

Associate it with a stable mass scale:

Bound state of a confining dynamic

Naturalness wiki-how:

how to stabilise the Higgs?

Give it spin:

Supersymmetry: associate it to fermions!

Part of a gauge field in extra dimensions (Gauge-Higgs U.)

Set its mass to zero:

🖛 Link it to a spontaneous symmetry breaking: pNGB Higgs

Associate it with a stable mass scale:

Bound state of a confining dynamic

A composite Higgs in pictures

Technicolor Higgs

Large global symmetry dynamically broken.

N Goldstone bosons

Mass set by the dynamics!

The global symmetry broken by quantum effects.

Some Goldstone bosons acquire mass

Mass smaller that the scale of dynamics

Can the Higgs be a composite state of a confining dynamics?

The Higgs as a (pseudo-)GB of a broken global symmetry:

Global symmetries:

Gauge symmetries:

 $egin{array}{c} \mathcal{G}_{\mathrm{SM}} o \mathcal{H} \ \mathbf{U} \ \mathcal{U} \ \mathcal{U$

 $h \in \mathcal{G}/\mathcal{H}$

Georgi, Kaplan 1984

The Higgs as a heavy spin-0 resonance:

 $h \text{ singlet of } \mathcal{H}$

Dilaton/Radion Higgs

Can the Higgs be a composite state of a confining dynamics? Pions in The Higgs as a (pseudo-)GB of a broken global symmetry: QCD $\mathcal{G} ightarrow \mathcal{H}$ $h \in \mathcal{G}$ Global symmetries: $\mathcal{G}_{\rm SM} \to U(1)_{\rm em}$ Georgi, Kaplan Gauge symmetries: 1984 σ meson The Higgs as a heavy spin-0 resonance: in QCD $h \text{ singlet of } \mathcal{H}$ Dilaton/Radion Higgs

The Higgs as a pseudo-Goldstone Boson

G	${\cal H}$	C	N_G	$\mathbf{r}_{\mathcal{H}} = \mathbf{r}_{\mathrm{SU}(2) \times \mathrm{SU}(2)} \left(\mathbf{r}_{\mathrm{SU}(2) \times \mathrm{U}(1)} \right)$	Ref.
SO(5)	SO(4)	\checkmark	4	${f 4}=({f 2},{f 2})$	[11]
$SU(3) \times U(1)$	$SU(2) \times U(1)$		5	$2_{\pm 1/2} + 1_0$	[10, 35]
SU(4)	Sp(4)	\checkmark	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$	[29, 47, 64]
SU(4)	$[SU(2)]^2 \times U(1)$	√*	8	$({f 2},{f 2})_{\pm {f 2}}=2\cdot ({f 2},{f 2})$	[65]
SO(7)	SO(6)	\checkmark	6	${f 6}=2\cdot ({f 1},{f 1})+({f 2},{f 2})$	_
SO(7)	G_2	√*	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$	[66]
SO(7)	$SO(5) \times U(1)$	√*	10	${f 10_0}=({f 3},{f 1})+({f 1},{f 3})+({f 2},{f 2})$	_
SO(7)	$[SU(2)]^{3}$	√*	12	$({f 2},{f 2},{f 3})=3\cdot ({f 2},{f 2})$	_
Sp(6)	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	\checkmark	8	$({f 4},{f 2})=2\cdot({f 2},{f 2})$	[65]
SU(5)	$SU(4) \times U(1)$	√*	8	${f 4}_{-5}+ar{f 4}_{+f 5}=2\cdot ({f 2},{f 2})$	67
SU(5)	SO(5)	√*	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$	[9, 47, 49]
SO(8)	SO(7)	\checkmark	7	${f 7}=3\cdot ({f 1},{f 1})+({f 2},{f 2})$	
SO(9)	SO(8)	\checkmark	8	${f 8}=2\cdot ({f 2},{f 2})$	[67]
SO(9)	$SO(5) \times SO(4)$	√*	20	$({f 5},{f 4})=({f 2},{f 2})+({f 1}+{f 3},{f 1}+{f 3})$	34
$[SU(3)]^2$	SU(3)		8	${f 8}={f 1}_0+{f 2}_{\pm1/2}+{f 3}_0$	8
$[SO(5)]^2$	SO(5)	√*	10	${f 10}=({f 1},{f 3})+({f 3},{f 1})+({f 2},{f 2})$	[32]
$SU(4) \times U(1)$	$SU(3) \times U(1)$		7	$3_{-1/3} + \mathbf{\bar{3}}_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2}$	[35, 41]
SU(6)	Sp(6)	√*	14	${f 14}=2\cdot ({f 2},{f 2})+({f 1},{f 3})+3\cdot ({f 1},{f 1})$	[30, 47]
$[SO(6)]^2$	SO(6)	√*	15	$oldsymbol{15} = (oldsymbol{1},oldsymbol{1}) + 2 \cdot (oldsymbol{2},oldsymbol{2}) + (oldsymbol{3},oldsymbol{1}) + (oldsymbol{1},oldsymbol{3})$	[36]

Table 1: Symmetry breaking patterns $\mathcal{G} \to \mathcal{H}$ for Lie groups. The third column denotes whether the breaking pattern incorporates custodial symmetry. The fourth column gives the dimension N_G of the coset, while the fifth contains the representations of the GB's under \mathcal{H} and $SO(4) \cong SU(2)_L \times SU(2)_R$ (or simply $SU(2)_L \times U(1)_Y$ if there is no custodial symmetry). In case of more than two SU(2)'s in \mathcal{H} and several different possible decompositions we quote the one with largest number of bi-doublets.

What underlying dynamics is up to the job?

Principle: a simple model

- Consider a confining gauge group G,
- ${\scriptstyle ilde{O}}$ with N fermions ψ^f in the rep R of G.

If R is real or pseudo-real, the condensate will be:

(The fermions are chiral, and the global flavour symmetry is SU(N))

If R is complex, the condensate will be:

(The fermions are not chiral, and the global flavour symmetry is $SU(N) \times SU(N)$)

 $\langle \bar{\psi}^i \psi^j \rangle \Rightarrow SU(N) \times SU(N) \to SU(N)$

What underlying dynamics is up to the job?

C	<u></u>	C	Na		
	SO(4)	<u> </u>	4		
$SU(3) \times U(1)$	$SU(2) \times U(1)$	•	5	Minimal case	I bi-doublet + I singlet
SU(4)	Sp(4)	\checkmark	5		Batra, Csako 0710.0333
SU(4)	$[\mathrm{SU}(2)]^2 \times \mathrm{U}(1)$	√*	8		Ryttov, Sannino 0809.0713
SO(7)	SO(6)	\checkmark	6		Galloway, Evans, Luty, Tacchi 1001.1361 Barnard, Gherahetta, Ray 1311,6562
SO(7)	G_2	√*	7		G.C., Sannino 1402.0233
SO(7)	$SO(5) \times U(1)$	√*	10		
SO(7)	$[SU(2)]^{3}$	√*	12		
Sp(6)	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	\checkmark	8	Contains	Forratti 1/0/ 7137
SU(5)	$SU(4) \times U(1)$	√*	8	EW triplets	Ferrerii 1404./15/
SU(5)	SO(5)	√*	14		
SO(8)	SO(7)	\checkmark	7		
SO(9)	SO(8)	\checkmark	8	Non-custodial	This is like QCD
SO(9)	$SO(5) \times SO(4)$	√*	20		
$[SU(3)]^2$	SU(3)		8		
$[SO(5)]^2$	SO(5)	√*	10	Minimal	2 hi-doublats + 6 sinalats
$SU(4) \times U(1)$	$SU(3) \times U(1)$		7	2HDM	L DI-doublers + 0 singlers
SU(6)	Sp(6)	√ *	14		G.C., Lespinasse, work in progress
$[SO(6)]^2$	SO(6)	√*	15		

The minimal case: $SU(4) \rightarrow Sp(4) \sim SO(5)$

Katz, Nelson, Walker hep-ph/0504252 Gripaios, Pomarol, Riva, Serra, 0902.1483 Galloway, Evans, Luty, Tacchi 1001.1361

• Sp(4) has rank = 2, and it contains an SU(2) \times SU(2) subgroup

The condensate transforms as:

$$\langle \psi^{\imath} \psi^{\jmath} \rangle = \mathbf{6}_{\mathrm{SU}(4)} \to \mathbf{5}_{\mathrm{Sp}(4)} \oplus \mathbf{1}_{\mathrm{Sp}(4)}$$

Goldstone bosons

Massive scalar $5_{\mathrm{Sp}(4)} \rightarrow (2,2) \oplus (1,1)$

 $1_{\mathrm{Sp}(4)} \to (1,1)$

of SU(2)xSU(2): Higgs doublet + singlet

> like the σ meson in QCD

Question 1: does this breaking pattern really take place?

Question 2: how is EW symmetry broken? (This is an issue of alignment!) $SU(4) \rightarrow Sp(4) \sim SO(5)$ U U $SU(2)_{\rm L} \times U(1)_{\rm Y} \to U(1)_{\rm em}$ $\theta = \pi/2$ 2 light scalars, no Higgs Higgs must be a TC excitation Technicolour A pseudo-Goldstone (composite) Higgs exists in between! θ $\theta = 0$ 4 massless Goldstone Bosons No EWSB Cacciapaglia, Sannino 1402.0233

Do we have a dynamical model for this?

G=SU(2) with 4 Weyl doublets Q_i

Batra, Csako 0710.0333 Ryttov, Sannino 0809.0713

 $< Q_i Q_j >$ condensate forms and breaks $SU(4) o Sp(4) \sim SO(5)$ (proven on the lattice)

Lewis, Pica, Sannino 1109.3513 + Hietanen 1404.2794

=(1,2)

The EW symmetry can be embedded in SU(4) by assigning the following $SU(2)_L \times SU(2)_R$ properties:

$$\begin{pmatrix} Q^1 \\ Q^2 \end{pmatrix} = (2,1), \qquad \begin{pmatrix} Q^3 \\ Q^4 \end{pmatrix}$$

Introducing a potential for θ

 $V(\theta) = {y'_t}^2 C_t \cos^2 \theta - 4C_m \cos \theta + \text{const.}$

$$|\cos \theta|_{\min} = \frac{2C_m}{{y'_t}^2 C_t}$$
 if ${y'_t}^2 C_t > 2|C_m|$

Note: to obtain $heta_{\sim}$ 0, we need to tune $~y_t^{\prime\,2}C_t\sim 2C_m$

$$m_{\eta}^{2} = \frac{y_{t}^{\prime 2}C_{t}}{4}f^{2} \qquad m_{h} = 125 \text{ GeV for } C_{t} \sim 2$$

$$m_{h}^{2} = \frac{y_{t}^{\prime 2}C_{t}}{4}f^{2}\sin^{2}\theta = m_{\eta}^{2}\sin^{2}\theta = \frac{C_{t}m_{t}^{2}}{4}$$

$$\sim v^{2}$$

The Higgs mass fine-tuning

Both Order f!

 $\left. \delta m_h^2 \right|_{\rm m} = \frac{2C_m f^2}{8} \cos \theta$

The Higgs mass fine-tuning

 $m_h \to 0 \quad \text{for} \quad \theta \to 0$

Predictions from the Lattice:

FIG. 6: The vector meson and axial vector meson masses in physical units. The chiral extrapolations have been performed using a linear fit to the points where $m_q < 0.12$.

Predictions from the Lattice:

Spectrum:

vector resonances ρ and a

Lattice results!

scalar singlet

Higgs

 $m_\eta = rac{m_H}{\sin heta}$ $m_H = 125~{
m GeV}$ No

Not a prediction!

Predictions from the Lattice:

No light top partners are needed to cancel the top loop!

For sin $\theta = 0.2$ (typical value):

 $m_a = 16.5 \pm 3.5 \text{ TeV}$

 $m_{\rho} = 12.5 \pm 2.5 \text{ TeV}$

vector resonances ρ and a

Higgs

Lattice results!

scalar singlet m_η

 $m_{\eta} = 625 \text{ GeV}$

 $m_H = 125 \text{ GeV}$

Not a prediction!

A slide on the $\theta = \pi/2$ vacuum:

$$f^{2} \operatorname{Tr}(D_{\mu}\Sigma)^{\dagger}D^{\mu}\Sigma = \frac{1}{2}(\partial_{\mu}h)^{2} + \frac{1}{2}(\partial_{\mu}\eta)^{2} \\ + \frac{1}{48f^{2}}\left[-(h\partial_{\mu}\eta - \eta\partial_{\mu}h)^{2}\right] + \mathcal{O}(f^{-3}) \\ + \left(2g^{2}W_{\mu}^{+}W^{-\mu} + (g^{2} + {g'}^{2})Z_{\mu}Z^{\mu}\right)\left[f^{2}s_{\theta}^{2} + \frac{s_{2\theta}f}{2\sqrt{2}}h\left(1 - \frac{1}{12f^{2}}(h^{2} + \eta^{2})\right) \\ - \frac{1}{8}(c_{2\theta}h^{2} + s_{\theta}^{2}\eta^{2})\left(1 - \frac{1}{24f^{2}}(h^{2} + \eta^{2})\right) + \mathcal{O}(f^{-3})\right].$$
(25)

h + i η charged under a global unbroken U(1) Candidate for asymmetric Dark Matter

$$m_{DM}^2 = C_t \frac{{y'_t}^2 f^2}{4} = C_t \frac{m_t^2}{4}$$

Generic θ :

$$f^{2} \operatorname{Tr}(D_{\mu}\Sigma)^{\dagger}D^{\mu}\Sigma = \frac{1}{2}(\partial_{\mu}h)^{2} + \frac{1}{2}(\partial_{\mu}\eta)^{2} \\ + \frac{1}{48f^{2}}\left[-(h\partial_{\mu}\eta - \eta\partial_{\mu}h)^{2}\right] + \mathcal{O}(f^{-3}) \\ + \left(2g^{2}W_{\mu}^{+}W^{-\mu} + (g^{2} + {g'}^{2})Z_{\mu}Z^{\mu}\right)\left[f^{2}s_{\theta}^{2} + \frac{s_{2\theta}f}{2\sqrt{2}}h\left(1 - \frac{1}{12f^{2}}(h^{2} + \eta^{2})\right) \\ + \frac{1}{8}(c_{2\theta}h^{2} - s_{\theta}^{2}\eta^{2})\left(1 - \frac{1}{24f^{2}}(h^{2} + \eta^{2})\right) + \mathcal{O}(f^{-3})\right].$$
(25)

η has no linear couplings: Candidate for Dark Matter?

Frigerio, Pomarol, Riva, Urbano 1204.2808

NO!

Once a dynamical theory is defined, η can decay via the "chiral" anomaly:

dimension of Q under confining group

 $\mathcal{L}_{WZW} = \frac{(d_R)}{48\pi^2} \frac{\cos\theta}{2\sqrt{2}f} \eta \left(g^2 W^{\mu\nu} \tilde{W}_{\mu\nu} - g'^2 B^{\mu\nu} \tilde{B}_{\mu\nu}\right) + \dots$

 $\eta \rightarrow W W, ZZ, Z\gamma$

The singlet at the LHC:

21/24

 The cross sections are too feeble to be observable at the LHC!

Dynamics of partial compositeness

If the top mass is generated by a 4-Fermi operator (à la ETC), one will also have FCNC operators in the SM:

Way-out: assuming coupling to composite fermions

 $\epsilon_L q_L \Psi_L + \epsilon_R q_R \Psi_R + \langle QQ \rangle \Psi_L \Psi_R$

How to define a dynamical model with composite fermions?

Dynamics of partial compositeness

	SU(4) x SU(6)	Sp(4) x SO(6)	SU(3)c x SU(2) x SU(2)
QQ	(6,1)	(1,1) (5,1)	(1,1,1) (1,2,2) + (1,1,1)
FF	(1,21)	(1,1) (1,20)	(1,1,1) $(8,1,1) + (6,1,1) + (\overline{6},1,1)$
FQQ	(6,6)	(1,6) (5,6)	$(3,1,1) + (\overline{3},1,1)$ $(3,2,2) + (3,1,1) + (\overline{3},2,2) + (\overline{3},1,1)$
FQQ	(6,6)	(1,6) (5,6)	$(3,1,1) + (\overline{3},1,1)$ $(3,2,2) + (3,1,1) + (\overline{3},2,2) + (\overline{3},1,1)$
FQQ	(1,6)	(1,6)	(3,1,1) + (3,1,1)
FQQ	(15,6)	(5,6) (10,6)	$(3,2,2) + (3,1,1) + (\overline{3},2,2) + (\overline{3},1,1) (3,2,2) + (3,3,1) + (3,1,3) + + (\overline{3},2,2) + (\overline{3},3,1) + (\overline{3},1,3)$

Conclusions

Credit: darkroom.baltimoresun.com

We still do not know what is hiding behind the Higgs boson!

- I presented a very simple model of composite Higgs (pNGB)
- which is still viable experimentally
- and we have Lattice calculations of the spectrum.
- No light top partners are needed!
- The smoking guns are additional light scalars (pNGB) maybe one <u>DM candidate</u>

Bonus track

"Pion" matrix:

$$\Sigma = e^{\frac{i}{f}(hY^4 + \eta Y^5)} \cdot \langle QQ \rangle$$

= $\left[\cos \frac{\sqrt{h^2 + \eta^2}}{2\sqrt{2}f} 1 + \frac{2\sqrt{2}i}{\sqrt{h^2 + \eta^2}} \sin \frac{\sqrt{h^2 + \eta^2}}{2\sqrt{2}f} (hY^4 + \eta Y^5) \right] \cdot \langle QQ \rangle$

Chiral lagrangian:

$$f^{2} \operatorname{Tr}(D_{\mu}\Sigma)^{\dagger}D^{\mu}\Sigma = \frac{1}{2}(\partial_{\mu}h)^{2} + \frac{1}{2}(\partial_{\mu}\eta)^{2} \\ + \frac{1}{48f^{2}}\left[-(h\partial_{\mu}\eta - \eta\partial_{\mu}h)^{2}\right] + \mathcal{O}(f^{-3}) \\ + \left(2g^{2}W_{\mu}^{+}W^{-\mu} + (g^{2} + {g'}^{2})Z_{\mu}Z^{\mu}\right)\left[f^{2}s_{\theta}^{2} + \frac{s_{2\theta}f}{2\sqrt{2}}h\left(1 - \frac{1}{12f^{2}}(h^{2} + \eta^{2})\right) \\ + \frac{1}{8}(c_{2\theta}h^{2} - s_{\theta}^{2}\eta^{2})\left(1 - \frac{1}{24f^{2}}(h^{2} + \eta^{2})\right) + \mathcal{O}(f^{-3})\right].$$
(25)

$$m_W = \sqrt{2}gf\sin\theta = \frac{gv}{2} \Rightarrow v = 2\sqrt{2}f\sin\theta$$

Lagrangian invariant under $\eta \rightarrow -\eta$: possible DM candidate?

Can η be Dark Matter?

In principle yes:

Frigerio, Pomarol, Riva, Urbano 1204.2808

f = 350 GeV

 $m_h = 125 \; GeV, f = 1 \; TeV, case \; 1$

Bounds from Higgs couplings

TC limit $\theta = \pi/2$

Thanks to S. Le Corre

Bounds from Higgs couplings

σ couplings at best fit values

Thanks to S. Le Corre

- From the point of view of the dynamics, all spin-1/2 states have the same bound interactions: their masses should be very similar.
- How to decouple unwanted resonances (have large anomalous dimensions)?
- Coloured pNGB from FF may also be light: how do they affect the LHC phenomenology of top partners?
- Does the theory really form condensates?

Only G = Sp(4) seem to work!

Dynamics of partial compositeness

 $G = Sp(2N_c)$ with 4 Weyl fund. Q_i

General cases listed in Ferretti, Karateev 1312.5330

+ 6 two-index asymmetric F_k

Barnard, Gherghetta, Ray 1311.6562

Global "flavour" symmetries: Q -> SU(4) containing S F -> SU(6) containing S

 $SU(2)_L \times U(1)_Y$ $SU(3)_c \times U(1)_Y$