Quarkonium production and polarization in pp collisions with the CMS detector

Ilse Krätschmer* (HEPHY Vienna)

on behalf of the CMS Collaboration

* supported by Austrian Science Fund (FWF): P24167

Motivation

- Quarkonia are bound states of a heavy quark and its antiquark ($c \bar{c}, b \bar{b}$)
- Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector
- Fundamental question: How do quarks combine into a bound state?
- Properties of QCD can be probed through several quarkonium production measurements, including production cross sections and polarizations

Motivation

- Quarkonia are bound states of a heavy quark and its antiquark ($c \bar{c}, b \bar{b}$)
- Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector
- Fundamental question: How do quarks combine into a bound state?
- Properties of QCD can be probed through several quarkonium production measurements, including production cross sections and polarizations

Motivation

- Quarkonia are bound states of a heavy quark and its antiquark ($\mathrm{c} \overline{\mathrm{c}}, \mathrm{b} \overline{\mathrm{b}}$)
- Quarkonium production is an ideal probe to study hadron formation, part of the non-perturbative QCD sector
- Fundamental question: How do quarks combine into a bound state?
- Properties of QCD can be probed through several quarkonium production measurements, including production cross sections and polarizations

A bound state created through a strong interaction

Charmonium

$J^{P C}=$	1^{--}	0^{++}	1^{++}	2^{++}

CMS data at $p_{T} \approx 15 \mathrm{GeV}$

J / Ψ directly produced

prompt $=$ directly produced + charmonium feed-down

Bottomonium

$\chi_{\mathrm{bj}}(3 \mathrm{P})$ triplet structure not yet established

NRQCD factorization approach

Non Relativistic Quantum ChromoDynamics (NRQCD) is an effective theory that factorizes quarkonium production into 2 steps

1. Production of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the initial pair into a bound state (non-perturbative QCD)

$$
\sigma(\mathcal{Q})=\sum_{n} \mathcal{S}[Q \bar{Q}(n)]\left\langle\mathcal{O}^{\mathcal{Q}}(n)\right\rangle
$$

$$
\begin{array}{ll}
n={ }^{2 S+1} L_{J}^{[C]} & \begin{array}{l}
\text { Quantum number of the heavy quark pair }(\mathrm{C}=1,8) \\
\mathrm{S}, \mathrm{~L}, \mathrm{~J}=\text { spin, orbital and total angular momentum }
\end{array}
\end{array}
$$

NRQCD factorization approach

Non Relativistic Quantum ChromoDynamics (NRQCD) is an effective theory that factorizes quarkonium production into 2 steps

1. Production of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the initial pair into a bound state (non-perturbative QCD)

NRQCD factorization approach

Non Relativistic Quantum ChromoDynamics (NRQCD) is an effective theory that factorizes quarkonium production into 2 steps

1. Production of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the initial pair into a bound state (non-perturbative QCD)

NRQCD factorization approach

Non Relativistic Quantum ChromoDynamics (NRQCD) is an effective theory that factorizes quarkonium production into 2 steps

1. Production of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the initial pair into a bound state (non-perturbative QCD)
```
possibly colored QQ pair
of any possible }\mp@subsup{}{}{2S+1}\mp@subsup{L}{J}{
quantum numbers
```


1) perturbative phase

NRQCD factorization approach

Non Relativistic Quantum ChromoDynamics (NRQCD) is an effective theory that factorizes quarkonium production into 2 steps

1. Production of the initial quark-antiquark pair (perturbative QCD)
2. Hadronization of the initial pair into a bound state (non-perturbative QCD)

NRQCD factorization approach

- SDCs are calculated using perturbative QCD
- LDMEs are conjectured to be constant (independent of the quarkonium momentum) and universal (process independent)
- LDMEs cannot be calculated and have to be determined from fits to experimental data
- Cross section and polarization measurements constrain the LDMEs

Pre-LHC era

- Theory calculations cannot simultaneously describe the production cross sections and polarizations measured at the Tevatron
- Determination of the polarization parameters was inconsistent
- LHC is a quarkonium factory (high energy and luminosity)

CMS detector

CMS detector performance

CMS is ideal for the study of quarkonia:

- high Pт coverage
- excellent dimuon mass resolution
- excellent decay length resolution

Quarkonium studies at CMS

Data

- collected with dimuon triggers in 3 mass windows:
- J/ $/: 2.8<\mathrm{m}<3.4 \mathrm{GeV}$
- $\psi(2 S): 3.4<m<4 \mathrm{GeV}$
- $\quad Y(\mathrm{nS}): 8.5<m<11.5 \mathrm{GeV}$
- at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ (2011) and「 $\mathrm{s}=8 \mathrm{TeV}$ (2012)
- corresponding to an integrated luminosity of $4.9 \mathrm{fb}^{-1}$ (2011) and $20.7 \mathrm{fb}^{-1}$ (2012)
Studies shown here use 7 TeV data unless specifically stated

Quarkonium polarization

- Polarization is measured through the angular decay distribution of the quarkonium decaying into two muons

$$
W(\cos \vartheta, \varphi \mid \vec{\lambda})=\frac{3 /(4 \pi)}{\left(3+\lambda_{\vartheta}\right)}\left(1+\lambda_{\vartheta} \cos ^{2} \vartheta+\lambda_{\varphi} \sin ^{2} \vartheta \cos 2 \varphi+\lambda_{\vartheta \varphi} \sin 2 \vartheta \cos \varphi\right)
$$

where $\lambda_{9}, \lambda_{\varphi}, \lambda_{9 \varphi}$ are the polarization parameters

- Angular decay distribution is measured with respect to a certain reference frame
- center-of-mass helicity HX (polar axis ZHX \approx direction of quarkonium momentum)
- Collins-Soper CS (Zcs \approx direction of relative velocity of colliding particles)
- perpendicular helicity PX ($\mathrm{ZPX}_{\mathrm{PX}} \perp \mathrm{Zcs}$)

Full angular decay distribution

- Two extreme angular decay distributions

$$
\begin{aligned}
& \text { Longitudinal polarization } \\
& J_{z}=0
\end{aligned}
$$

$$
\begin{array}{r}
\lambda_{\vartheta}=-1 \\
\lambda_{\varphi}=0 \\
\lambda_{\vartheta \varphi}=0
\end{array}
$$

$$
\begin{gathered}
\text { Transverse polarization } \\
\lambda_{\vartheta}=+1 \quad \mathrm{~J}_{\mathrm{z}}= \pm 1 \\
\lambda_{\varphi}=0 \\
\lambda_{\vartheta \varphi}=0
\end{gathered}
$$

- Unless the full angular distribution is measured, two very different physical cases are indistinguishable.

- The shape of the distribution is invariant and can be characterized by the frame invariant parameter $\tilde{\lambda}=\left(\lambda_{\vartheta}+3 \lambda_{\varphi}\right) /\left(1-\lambda_{\varphi}\right)$

Quarkonium polarization measurements

- CMS measured $\lambda_{9}, \lambda_{\varphi}, \lambda_{\vartheta \varphi}$ and $\tilde{\lambda}$ in three different reference frames (HX, CS, PX) for the $J / \Psi, \psi(2 S), Y(1 S), Y(2 S)$ and $Y(3 S)$ mesons
- As a function of transverse momentum, p_{T}, and dimuon rapidity, $|\mathrm{y}|$
- The non-prompt term (B decays) is subtracted in the $\psi(\mathrm{nS})$ cases

Details in PRL 110, 081802 (2013) and PLB 727, 381 (2013)

Frame invariant parameter $\tilde{\boldsymbol{\lambda}}$

Good agreement between the $\tilde{\lambda}$ parameters in the three reference frames shows that the results are reliable

$Y(n S)$ polarization in the HX frame, $|\mathrm{y}|<0.6$

Prompt $\psi(\mathrm{nS})$ polarization in the HX frame

- $\psi(2 S)$ is not affected by feeddown decays from higher states
- No sign of strong polarizations

LHC polarization measurements

- CMS polarization measurements show no sign of strong polarizations
- No evident differences between charmonium and bottomonium states or directly produced states and those affected by feed-down

LHC polarization measurements

- CMS polarization measurements show no sign of strong polarizations
- No evident differences between charmonium and bottomonium states or directly produced states and those affected by feed-down

- Good consistency with other polarization measurements done by LHCb, ALICE and CDF

LHC polarization measurements

- CMS polarization measurements show no sign of strong polarizations
- No evident differences between charmonium and bottomonium states or directly produced states and those affected by feed-down

Y(nS): CMS data vs NLO NRQCD (J.X. Wang et al.)

- $\Upsilon(1 S)$ and $\Upsilon(2 S)$ predictions include the effect of feed-down decays of P-wave states, while the $Y(3 S)$ is assumed to be 100% directly produced
- NRQCD fits are made using hadroproduction data, including the CMS polarization results

$Y(n S):$ CMS data vs NLO NRQCD (J.X. Wang et al.)

Updated fits including feeddown presented at QWG 2014

- $Y(1 S)$ and $Y(2 S)$ predictions include the effect of feed-down decays of P-wave states, while the $Y(3 S)$ is assumed to be 100% directly produced
- NRQCD fits are made using hadroproduction data, including the CMS polarization results

$\Psi(\mathrm{nS}):$ CMS data vs NLO NRQCD (B. Kniehl et al.)

- Color octet matrix elements are fitted using photo- as well as hadro-production data, excluding polarization results
- Theory predictions do not account for feeddown decays from P-wave states

S-wave quarkonium production cross sections

- Extraction of yields through unbinned maximum likelihood fits to invariant mass and decay length

Details in CMS-PAS-BPH-14-001 and CMS-PAS-BPH-12-006

Yield corrections

- Acceptance and single muon and dimuon efficiencies are corrected for on an event-by-event basis
- Acceptance depends on the assumed polarizations; Results given for several scenarios: measured, unpolarized, $\lambda_{9}{ }^{H X}= \pm 1$

Prompt $\psi(\mathrm{nS})$ production cross section

- Measurements were made as a function of p_{T} in four bins of dimuon rapidity as well as integrated in rapidity ($|\mathrm{y}|<1.2$)
- Prompt J / ψ and $\psi(2 \mathrm{~S})$ cross sections up to P_{T} around 100 GeV

$Y(n S)$ production cross section

- $Y(n S)$ differential cross sections were measured in the рт range $10-100 \mathrm{GeV}$
- All 3 states show similar trends
- Slope of cross section changes from exponential to power-law at $\mathrm{p}_{\mathrm{T}} \sim 20 \mathrm{GeV}$

Recent developments to explain production

- Data-driven approach (PLB 737, 98 (2014)): Consistent treatment of the cross sections and polarizations
- Leading power fragmentation formalism (PRL 113, 022001 (2014))
- Both approaches exclude data at low $\mathrm{P}^{\boldsymbol{T}}$
\Rightarrow Both get reasonable agreement with data

- Unpolarized CO contribution dominates the production

P-wave quarkonium production

- χ states are measured through their radiative decays to S-wave quarkonia with the photon converting into an $\mathrm{e}^{+}{ }^{-}$pair
- Excellent χ mass ($\approx 6 \mathrm{MeV},\left|\mathrm{y}_{\mu}\right|<1$ or $\left|\eta_{\gamma}\right|<1$) and conversion vertex resolutions
- Yield extraction through unbinned maximum likelihood fits

Relative production rate of P-wave states

- Prompt $\chi_{\mathrm{c} 2} / \chi_{\mathrm{c} 1}$ and $\chi_{\mathrm{b} 2}(1 \mathrm{P}) / \chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratios seem to be rather flat with p_{T}

Relative production rate of P-wave states

- Prompt $\chi_{\mathrm{c} 2} / \chi_{\mathrm{c} 1}$ and $\chi_{\mathrm{b} 2}(1 \mathrm{P}) / \chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratios seem to be rather flat with p_{T}
- Prompt $\chi_{c 2} / \chi_{c 1}$ ratio: Care is needed regarding the assumed polarizations; they can significantly change the result

Relative production rate: data vs theory

- Results compatible among experiments

Relative production rate: data vs theory

- Results compatible among experiments
- Measured χ_{c} ratio agrees with theory calculations
- χ_{b} ratio is well described by predictions from Han et al.

Plot adapted from PRD 90 (2014) 074021

Summary

- Cross sections and polarizations of five S-wave quarkonia were measured in pp collisions at $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$
- None of the five S -wave states shows strong polarizations
- Relative production cross section ratios of prompt $\chi_{c 2} / \chi_{c 1}$ and $\chi_{\mathrm{b} 2}(1 \mathrm{P}) / \chi_{\mathrm{b} 1}(1 \mathrm{P})$ were measured

Many more quarkonium production analyses with 8 TeV data are still ongoing ...

