

Top quark production at CMS

Silvia Costantini Ghent University

On behalf of the CMS Collaboration

CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

• Single top production

- t-channel
- tW-channel
- |Vtb| extraction
- s-channel

• Top quark pair production

- Lepton + jets channel
- Dilepton channel
- Channels with taus
- Differential cross sections

• Associated production

- tt + W/Z
- tt + jets
- tt + bb

• First α_s determination from tt cross section

Showing mainly 8TeV results
Several 7TeV results in the appendix

		t-channel	tW-channel	s-channel
Approx. NNLO N. Kidonakis arXiv:1205.3453	σ (pb) at 7 TeV	64.6 ± 2.1	15.6 ± 1.2	4.59 ± 0.19
	σ (pb) at 8 TeV	$\textbf{87.1} \pm \textbf{2.8}$	$\textbf{22.2} \pm \textbf{1.5}$	5.55 ± 0.22

Top quark decays almost exclusively to Wb: Kruger2014 1-6 December 2014

Silvia Costantini

3

t-channel cross section at 8 TeV

CMS PAS TOP-12-038 19.7 fb⁻¹ JHEP 06 (2014) 090

- Lepton + jets final state from leptonic top decay: t \rightarrow Wb \rightarrow lvb
- require 1e or 1 μ , 2jets-1tag, in top mass window (130 < m $_{lvb}$ < 220 GeV)
- Cross section extracted from fit to the pseudorapidity η of the light jet
- Background shapes for W+jets and tt estimated from control regions in data (side band in m_{lvb} and 3jets-2tag)

- $\sigma_{t-channel} = 83.6 \pm 2.3 \text{ (stat.)} \pm 7.4 \text{ (syst.) pb}$ (incl.)
- $\sigma_{t-\text{ch.}}(t) = 53.8 \pm 1.5 \,(\text{stat}) \pm 4.4 \,(\text{syst}) \,\text{pb},$ $\sigma_{t-\text{ch.}}(\bar{t}) = 27.6 \pm 1.3 \,(\text{stat}) \pm 3.7 \,(\text{syst}) \,\text{pb}.$

• R_{8/7} = 1.24 ± 0.08 (stat.) ± 0.12 (syst.)

Total syst: 8.9%. Main systematics: Signal modeling (5.7%) JES, JER, MET (4.3% in total)

Silvia Costantini

Kruger2014 1-6 December 2014

tW-channel at 8 TeV

CMS PAS TOP-12-040 12.2 fb⁻¹ PRL 112 (2014) 231802

- tW associated production observed for the first time at CMS
- Evidence reported at 7 TeV by ATLAS and CMS
- Cleanest signature when both t and W decay leptonically:
- 2 opposite sign isolated leptons in the final state
- Main background processes: tt, and also Z -> II
- Multivariate discriminant to distinguish signal from tt
- Jet counting to define signal enriched region (2leptons, 1jet-1tag) and two control regions (2jets, 1 or 2 tags)
- Two cross-checks analyses: consistent results

Signal significance: 6.1σ (5.4±1.4σ expected)

 $[\]sigma_{tW}$ = 23.4±5.4 pb

V_{th} extraction JHEP 06 (2014) 090

JHEP 12 (2012) 035

- Single top events provide the possibility to directly probe the Wtb vertex and measure Vtb
- Measurements both in the t-channel and in the tW-channel •
- Method: assuming |Vtd| and |Vts| << |Vtb| \rightarrow |Vtb| = $\sqrt{\sigma}$ (σ / σ_{th}) ۲ σ_{th} : SM prediction calculated assuming |Vtb| = 1

Silvia Costantini

Kruger2014 1-6 December 2014

CMS PAS TOP-13-009 19.3 fb⁻¹ s-channel search at 8 TeV

- The smallest cross section among 3 processes
- 1 top and 1 b-jet in the final state: selection based on leptonic t decay
- Lepton +jets signature:
 - signal region: with 1 e or 1 mu, MET, 2-btag jets (2jets-2tags)
 - Control region to separate tt: require 1 additional jet (3jets-2tags)
- Overwhelming background from tt, multijets, W+jets and t-channel

NNLO σ_{tt} for m_{top} = 173.3 GeV (LHC@7TeV) = 172 pb, (LHC@8TeV) = 245 pb

e,µ

e,µ

dileptons

~ 5%

small

Z+jets

b-jet

BR:

Bkg:

Mainly:

MET

b-iet

Kruger2014 1-6 December 2014

CMS PAS TOP-12-006 2.5-2.8 fb⁻¹ Leptons + jets at 8 TeV

$tt \rightarrow lvqqbb$

Common strategies:

- Trigger: isolated lepton
- •Require 1 isolated lepton (e, μ)
- high p_τ (~25-30 GeV)
- **veto** on additional leptons
- at least 4 jets
- at least 1 b-tagged jet
- •Binned likelihood fit to M_{lb} distribution
- Related to the leptonic top quark mass
- Cross-check analysis: invariant mass of three-jet combination with highest p_{T}
- Data driven templates for QCD background: multijet shape and normalization from data

 σ_{tt} = (228.4 9.0(stat.) +29-26 (syst.) **10.0(lumi.))pb,** $\Delta \sigma_{tt} / \sigma_{tt} = 14.0\%$ Results with 19.6 fb⁻¹ expected soon Main systematics: b-tagging efficiency 8%, jet energy scale 5%

CMS

Common strategies:

- 2 OS isolated leptons
- with high pT
- veto Z mass region for ee and $\mu\mu$
- at least 2 jets
- minimum E_T^{miss}
- •Very low background
- Require 1 b-tagged jet
- •Cut-based analysis

•DY events (inside the dilepton invariant mass window) estimated from sidebands

 σ_{tt} = (239 2 (stat.) + 11 (syst.) 6 (lumi.))pb, Δ σ_{tt} / σ_{tt} = 5.3% Main systematics: lepton efficiencies 2%, jet energy scale 3%

Silvia Costantini

Kruger2014 1-6 December 2014

$tt \to \tau v l v b b$

•Hadronic tau decays

•Based on PF, uses tracker and ECAL info to reconstruct and identify 1- and 3-prong decays plus photons from π^0 decays

Require 1 isolated electron or muon, at least 2 jets, at least one of which is b-tagged
Largest background contribution estimated from data: tt with W -> jets, with one jet misidentified as τ

Silvia Costantini

200

150

100

50 6.5 Indep. μ_{F,R} variation PP → tt+X; m_{top}=173.3 GeV MŞTW2008(68ç.I.) LO; NLO; NNLO

8

7.5

Silvia Costantini √s [TeV]

Comparison with theory

Approx. NNLO calculations, LHC @ 8 TeV

- **Authors** $(\sigma (tt) \pm scale \pm PDF) pb$ Full NLO matrix element and approximate NNLO HATHOR, Moch et al. $202.1 + 11.3 - 14.5 \pm 8.5$ calculations for σ_{tot} by arXiv 1203.6282 (ABM11 PDFs) several groups HATHOR, Moch et al. 249.9 +14.0-18.2 +6.2-6.3 arXiv 1203.6282 (MSTW PDFs) **Exact NNLO calculations** Cacciari et al. ,arXiv 1111.5869 228.6 +18.2-19.8 +5.6-5.9 now available Kidonakis, arXiv 1205.3453 $234 + 10 - 7 \pm 12$ scale uncertainty: ~ 3% Ahrens et al., 1105.5824 224.7 +11.8-12.2 +10.8 -11.6 Czakon et al., 1303.6254 245.8 +6.2-8.4 ± 6.2 For m₊ = 173.3 GeV Czakon, Fiedler, Mitov 1303.6254 [hep-ph] 350 NNLO (scales) NLO (scales) 300 LO (scales) CMS. 7TeV - NNLO ATLAS+CMS. 7TeV 250 CMS at 8 TeV, $\Delta \sigma_{tt} / \sigma_{tt} = 6.6\%$: - NLO ATLAS, 7TeV CMS. 8TeV σ_{tot} [pb]
 - $\sigma_{t\bar{t}}$ = 227 ± 3 (stat.) ± 11 (syst.) ± 10 (lumi) pb

Challenging theory predictions

Kruger2014 1-6 December 2014

-L0

8.5

Results at 7 and 8 TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOPSummaryPlots

Combination with a BLUF method

•Lepton ID, b-tagging, background normalization treated as uncorrelated syst. uncertainties

• PU, BR, JES, JER, theory and luminosity treated as correlated

Differential cross sections

Key measurements to experimental and theoretical precision Access to higher orders

I+jets: CMS PAS TOP-12-027 12.1 fb⁻¹

- e/μ + jets
- At least 4 jets with $p_T > 30$ GeV, 1 lepton with $p_T > 30$ GeV
- 2 b-tagged jets

Dileptons: CMS PAS TOP-12-028 12.1 fb⁻¹

- ee, μμ, eμ
- Two opposite charge, isolated leptons with p_T > 20 GeV
- ee, μμ outside Z mass window (91 ±15) GeV
- 1 b-tagged jet

•More distributions available: top quark p_T , jet p_T , pseudo(rapidity), M_{lb} , ...

Kruger2014 1-6 December 2014

 Top quark p_T : discrepancies observed between NLO generators and data, as well as between NLO and approx. NNLO predictions.

Shape differences taken into account as systematic uncertainties in recent measurements

Associated production of Vector Bosons with top-antitop pairs at 8 TeV

19.5 fb⁻¹ (8 TeV) 19.5 fb⁻¹ (8 TeV) 19.5 fb⁻¹ (8 TeV) σ_{iiz} [fb] Events Events CMS CMS CMS Observed - Observed 18 2-D best fit 🔲 tīZ 📃 tīW 500 68% contour ttZ ttw 16 95% contou WZ WZ Irreducible 1-D best fit Irreducible Non-top-quark 14 1-D ttZ±1σ 40 Mismeasured charge 400 Misidentified lepton = 1-D ttw ± 1σ Misidentified lepton Backgrounds 12 ttZ theory Backgrounds BG uncertainty H BG uncertainty tw theory 30 300 10 8 20 200 6 10 100 2 Գ µ⁺µ⁺ e⁺µ⁺ e⁺e⁺ Total μīμī eμ ee 100 200 300 400 500 600 0 $\sigma_{t\bar{t}W}$ [fb] Total (μμ)μ (µµ)e (ee)µ (ee)e

Tri- lepton channel p_T > 20 GeV 2 b-tagged jets <u>Exclusive search for ttZ</u> Only events with m_{II} outside Z window

New channel with 4 leptons

Silvia Costantini

Dilepton channel (SS), 2 pT > 40 GeVCompatible withHT > 155 GeVSM predictions1b-tagged jetInclusive search for ttZ, ttW

Combining all channels: ttV signal significance of 3.7σ

tt + W/Z

tt + jets

•Require at least 2 isolated leptons, $p_T > 20$ GeV, with invariant mass outside Z window At least 2 jets with $p_T > 30$ GeV

At least 1 b-tagged jet

Reasonable description of the data by NLO generators

•Lower multiplicity by MC@NLO +Herwig

Kruger2014 1-6 December 2014

•Slightly worse description by MadGraph with Q²/4 18

Silvia Costantini

predicted by NLO simulation

tt + bb

7 TeV results: CMS PAS TOP-12-024 5 fb⁻¹

Study of heavy flavour content in tt events
Comparison with NLO QCD calculations
Searches for ttH

- •Dilepton events • \geq 4 jets with $p_T > 20$ (40) GeV
- •≥ 2 b-tagged jets

•Measurement performed in the visible phase space

Experimental uncertainties cancel out in the cross section ratio

0.023 \pm 0.003 (stat.) \pm 0.005 (syst.) at Jet $p_{\rm T}~>~20~{\rm GeV}$

 $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) =$

0.022 \pm 0.004 (stat.) \pm 0.005 (syst.) at Jet $p_{\rm T}$ > 40 GeV

First α_s determination from

tt cross section

CMS PAS TOP-12-022 5 fb⁻¹ PLB 728 (2014) 496

• Approx. NNLO QCD + different PDFs used to extract α_s from the ttbar cross section at 7 TeV. First determination of α_s from t quark production

- With PDF set NNPDF2.3, a pole mass m_t = (176.7 +3.0 –2.8) GeV is obtained when constraining α_s at the m_z scale
- Alternatively, by constraining m_t to the latest average from direct mass measurements, a value of α_s (m_z) = 0.1151 +0.0028 -0.0027 is extracted.

Most precise determination at hadron colliders

- Measurements of (almost) all experimental signatures at 7 TeV and 8 TeV
- Precision measurements in single top t-channel
- Experimental uncertainties on σ_{tt} : ~4%-7%
- Challenging theory predictions
- CMS top quark results at:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Additional slides

LHC and CMS operation

2012: 23.30 fb⁻¹ delivered by LHC and 21.79 fb⁻¹ recorded by CMS 2011: 5.72 fb⁻¹ delivered by LHC and 5.20 fb⁻¹ at 7 TeV 2010 at 7 TeV : ~36 pb⁻¹ CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV Data included from 2012 of C

Overall data taking efficiency ~94%. Average fraction of operational channels per subsystem >98% Instantaneous luminosity above $7 \cdot 10^{33}$ cm⁻²s⁻¹ CMS Peak Luminosity Per Day, pp, 2012, $\sqrt{s} = 8$ TeV

Successfully coping with PileUp at the trigger, DAQ, computing and reconstruction level

Silvia Costantini

Kruger2014 1-6 December 2014

Common selection requirements

• Trigger

- Single/double (isolated) leptons
- and/or based on hadronic activity

"Particle Flow" reconstruction and identification combining information from all subdetectors:

Jets

- Anti-k_T algorithm with R=0.5
- 🛥 p_T> 30-45 GeV |η|<2.5
- 🕳 b-tagging
- Leptons (e,μ,τ) with p_T>20-30 GeV
 - Isolation in tracker and calorimeters
 - Reconstruction and ID quality cuts
- Missing transverse energy (Ε_T^{miss})
 - In some analyses, > 20-60 GeV

-charged hadrons -photons -neutral hadrons -muons -electrons

> charged hadrons

t-channel cross section at 7 TeV

CMS PAS TOP-11-021 1.17 fb⁻¹ (mu) and 1.17 fb⁻¹ (ele)

JHEP 12 (2012) 035

Data
 t-channel

tī, s-channel, tW

QCD multijet

0.2 0.4 0.6 0.8

channel

QCD multijet

tī, s-channel, tW W/Z + jets, Diboson

0.2

0.4

BDT output

NN output

W/Z + jets, Dibosor

- Lepton + jets final state from leptonic top decay: $t \rightarrow Wb \rightarrow lvb$
- Three analyses giving consistent results: fit to the pseudorapidity η of the light jet (as for 8 TeV) plus two multivariate analyses using a Boosted Decision Tree (BDT) or a Neutral Network (NN) discriminant

Events

200 F

180

160

140

120 100

80

60E

40

20

Events

300

250

200

150

100 50

0

0-1

CMS vs = 7 TeV

Electron, "2-jets 1-btag"

-0.6

-0.8

-0.4

-0.2

0

Electron, "2-jets 1-btag

-0.8 -0.6 -0.4 -0.2 0

L = 1.56 fb⁻¹

Combined result:

σ_{t-ch} = 67.2 ± 6.1 pb

Total systematic uncertainties in the range 8%-10% for the 3 analyses

- Multijet shape from MC, normalization from data
- Profile Likelihood fit to Secondary vertex mass in N(jets), N(b-tagged jets) plane
- •Some systematic uncertainties treated as nuisance parameters (Q², b-tag eff.)

Main systematics: lepton efficiencies 3%, jet energy scale 2.4%

Dileptons at 7 TeV

Profile likelihood fit to jet multiplicity, b-tagged jet multiplicity
DY events (inside the dilepton invariant mass window) estimated from sidebands
Cross-check: cut-based analysis requiring 1 b-tagged jet

 $σ_{tt} = (161.9 \pm 2.5 \text{ (stat.)} + 5.1-5.0 \text{ (syst.)} \pm 3.6 \text{ (lumi.)}) pb,$ $Δσ_{tt} / σ_{tt} = 4.2\%$ Main systematics: lepton efficiencies 1.7%, jet energy scale 1.8%

τ + jets at 7 TeV tt $\rightarrow \tau v q q b b$

- At least 4 jets
- \geq one b-tagged jet
- \geq one hadronically decaying τ
- •Minimum E_T^{miss}
- •Hadronic tau decays
- •QCD background extracted from data
- Profile likelihood fit to NN output
 Cross-check: cut-based analysis requiring 1
 b-tagged jet

 σ_{tt} = (152 ± 12 (stat.) ± 32 (syst.) ± 3 (lumi.)) pb, $\Delta \sigma_{tt} / \sigma_{tt}$ = 23% Main systematics: τ identification 9%, τ energy scale 7%, τ trigger eff. 7%, jet energy scale 11%

 $tt \to \tau v lv b b$

Dileptons (τ, e/μ) at 7 TeV

•Hadronic tau decays

•Based on PF, uses tracker and ECAL info to reconstruct and identify 1- and 3-prong decays plus photons from π^0 decays

• Profile likelihood fit to jet multiplicity, b-tagged jet multiplicity

•Cross-check: cut-based analysis requiring 1 btagged jet

 σ_{tt} = (143 ± 14 (stat.) ± 22 (syst.) ± 3 lumi.)) pb, $\Delta \sigma_{tt} / \sigma_{tt}$ = 18% Main systematics: τ identification 6%, jet energy scale 6%

Silvia Costantini

CMS PAS TOP-11-007 3.5 fb⁻¹ JHEP 1305 (2013) 065

Fully hadronic at 7 TeV $tt \rightarrow qqqqbb$

- •Very high multijet background
- •At least 6 jets
- •With different high pt thresholds
- Require 2 b-tagged jet (essential against QCD)
- •QCD estimate from data, reweighted from 0 b-tag control region

•Unbinned likelihood fit to reconstructed top mass

σ_{tt} = (139 ± 10 (stat.) + 26 (syst.) ± 3 (lumi.))pb, $\Delta \sigma_{tt} / \sigma_{tt}$ = 20% Main systematics: b-tagging efficiency 6%, background contribution, jet energy scale 10%

CMS PAS TOP-12-014 5 fb⁻¹ tt + W/Z at 7 TeV Phys. Rev. Lett. 110 (2013) 172002

Associated production of Vector Bosons with top-antitop pairs at 7 TeV Measurement performed in two independent channels

Trilepton channel, $p_T > 20, 20, 10 \text{ GeV}$ HT > 120 GeV 2 b-tagged jets Exclusive search for ttZ Only events with 70 < m_{II} < 110 GeV Dilepton channel (SS), pT > 55, 30 GeV HT > 100 GeV 1b-tagged jet Inclusive search for ttZ, ttW

Compatible with NLO calculations

Combining all 7 channels: ttV signal significance of 4.67 σ

 $\sigma_{ttV} = 0.43 + 0.17 - 0.15 (stat.) + 0.09 - 0.07 (syst.) pb$ $\sigma_{ttZ} = 0.28 + 0.14 - 0.11 (stat.) + 0.06 - 0.03 (syst.) pb$ Kruger2014 1-6 December 2014