

Search for the Higgs Boson in the ttH production mode using the ATLAS detector

G.Salamanna (Universita' and INFN - Roma Tre) for the ATLAS Collaboration

Outline

- General framework, motivations
- di-photon channel
 - interlude on t+H and WtH
- bb channel
- Prospects
- Conclusions

Higgs Boson coupling with top quarks

- t-H dominates gg fusion mechanism
 - but through loop process where...
 - ...new physics could also hide
- (t-H contributes to H→γγ, but also in this case it's not the only component)

Higgs Boson coupling with top quarks

- t-H dominates gg fusion mechanism
 - but through loop process where...
 - ...new physics could also hide
- (t-H contributes to H→γγ, but also in this case it's not the only component)
 - By measuring ttH we have <u>direct</u> access to the coupling at production instead
 - comparing measured coupling with gg fusion, can unveil new physics

SM cross-section at 8 TeV

- Translates into ~ 2600 events before detector acceptance and selections with L = 20.3 fb⁻¹ collected by ATLAS at 8 TeV
- Main background for analyses in this talk: tt+jets (light or heavy flavour)
 - cross section at 8 TeV: 253 pb (*i.e.* ~2 10³ times the signal)

Channels considered

- BR(H->γγ) < 0.23%
- BR(H->bb) = 58%
- BR(H->WW+ZZ+TT) = 30%

1 channel

• 2 channels (according to top quark decay mode)

• several channels (according to light lepton and tau multiplicities)

- γγ: clear resonance peak but very scarce
- bb: by far most abundant, but overwhelmed by tt+HF background and less easy bb reconstruction
- multi-lepton channels: good compromise, but sensitive to additional tt+W/Z backgrounds hard to control with data (\rightarrow still in progress)

Event generation

Signal ttH: Helac-One Loop+Powheg interface to parton shower (="PowHel")

inclusive in Higgs boson decays, cross-section and BR from <u>http://arxiv.org/</u> <u>abs/1101.0593</u> and updates

- CTIONLO Parton Distribution Function (PDF)
- Pythia 8 for parton shower (PS) + CTEQ6LI PDF

(W)tH: MadGraph5_AMC@NLO, 5-flavour scheme

inclusive in Higgs boson decays, xsec and BR from Yellow Book

• three different values of $k_t = -1, 0, + 1$.

CTIONLO PDF

Herwig++ for parton shower + CTEQ6LI PDF

O tt+jets: Powheg

• inclusive in flavour of additional partons

O CTIONLO PDF

• Pythia 6 for parton shower + CTEQ6LI PDF

Other sources of background in back-up

ttH(YY)

http://arxiv.org/abs/1409.3122

Overall strategy

- Data collected at 7 (4.5 fb⁻¹) and 8 (20.3 fb⁻¹) TeV
- 2 isolated, high-p_T photons for Higgs boson mass reconstruction
- Categorize events according to top quark decay:
 - Optimized on the expected limit on μ_{ttH}
 - leptonic channel: \geq I leptons (e or μ), \geq I b-tagged jet
 - hadronic channel: \geq 6 jets, \geq 2 b-tagged jet
 - Combined signal selection: eff ~ 15%, purity ~80%

Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH	N_B
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5	$0.5^{+0.5}_{-0.3}$
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9	$0.5_{-0.3}^{+0.5}$
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6	$0.9^{+0.6}_{-0.4}$
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1	$2.7^{+0.9}_{-0.7}$
absoluto									absolute
numbers				f	raction	S			numbers

Pre-selections

- Photons passing quality criteria on shower shape and isolated both in tracking and calorimetry
 - 2 photons with a reconstructed vertex required
 - leading (subleading) photon required to have $E_T > 0.35 m_{YY}$ (0.25 m_{YY}), and the di-photon mass to be between 105 GeV and 160 GeV ("Signal Region")
- e or μ of good quality (track, track-cluster match) and isolated both in tracking and calorimetry
 - E_T(e) > 15 GeV, p_T(µ) > 10 GeV
- Anti- k_T jets with R=0.4, calibrated at hadronic scale
 - pT(jet) > 25 GeV, central
 - pile-up suppressing selection criteria for jets of $p_T(jet) < 50 \text{ GeV}$
- b-quark identification in jets with NN-based algorithm
 - 60, 70, 80% b-tag efficiency working points all used in this analysis

Analysis

- Localized excess looked for around $m_{\gamma\gamma}$ =125.4 GeV
- Unbinned LL fit to background and signal in signal region
 - signal: Gaussian core portion and a power-law low-end tail + Gaussian (tails)
 - background: exponential function tested on ad-hoc control region (loosening photon ID) sensitive to jets faking γ

Results

- m_H=125.4 GeV
- Observed limit on $\mu_{ttH} = 6.5$
- Expected: 4.9
- Comparable impact of theory and experimental systematic uncertainties on final yield of events

	$t\bar{t}H$ [%]		t H qb [%]		$\operatorname{Wt} H$ [%]		ggF [%]	WH $[\%]$
	had.	lep.	had.	lep.	had.	lep.	had.	lep.
Luminosity					± 1.8			
Photons	± 10.0	± 10.0	± 10.0	± 10.0	± 10.0	± 10.0	± 10.0	± 10.0
Leptons	< 0.1	± 0.7	< 0.1	± 0.7	< 0.1	± 0.6	< 0.1	± 0.7
Jets and $E_{\rm T}^{\rm miss}$	± 9.1	± 1.6	± 19	± 2.4	± 13	± 2.9	± 30	±10
Bkg. modeling	$0.12 \mathrm{evt.}$	0.01 evt.	t. applied on the sum of all Higgs boson production pro-					
Theory $(\sigma \times BR)$	+10, -13		+8	,-7	+12	,-12	+11, -12	+5.5, -5.5
MC Modeling	±11	± 3.3	± 12	± 4.4	± 13	± 5.2	± 130	±100

(W)tH with YY channel

- Residual sign ambiguity between fermionic and couplings
- Single top + Higgs production probes this sign

- SM has destructive interference between H emission from top and from W: if relative sign of top coupling flips, large constructive interference
- Also affects BR(H-> $\gamma\gamma$): double-sensitivity of this channel

Analysis tHj+WtHj

- Exactly same analysis/samples as ttH
- scanning also limit in top-H Yukawa coupling k_t
 - tH+WtH selection efficiencies extrapolated from 3 benchmark kt values/MC samples (variations up to 15/20%)

ttH(bb)

ATLAS-CONF-2014-011

Goal and strategy

- Data collected at 8 (20.3 fb⁻¹) TeV
- Multi-variate analysis technique to reduce large bkg from top
 - but this needs attention with modeling of used variables
- Construct matrix of N(jets)-N(b-tags) to characterize B
 - simultaneous fit for N_S (from signal-enriched regions) and N_B (from control-enriched regions)

• lepton+jets channel: I e or μ + (4, 5, \geq 6 jets) and (2, 3, \geq 4 b-tags)

Pre-selections

- Single lepton trigger (OR of low-pt and high-pt to even-out plateau)
- e or μ of good quality (track, track-cluster match) and isolated both in tracking and calo
 - I+jets: E_T(e)>25 GeV, p_T(µ)>25 GeV
 - dilepton: leading $E_T(e)/p_T(\mu) > 25$ GeV, subl $E_T(e)/p_T(\mu) > 15$ GeV
- Anti- k_T jets with R=0.4, calibrated at hadronic scale
 - pt(jet)>25 GeV, central
 - pile-up suppressing cuts for jets of pT(jet)<50 GeV
- b-quark identification in jets with NN-based algorithm
 - 70% b-tag efficiency working points, ~1% light-jet mistag rate

Background modeling

- Main bkg tt+HF in all regions for both channels
 - 50% normalization uncertainty on ttbb/cc
- Powheg + Pythia6 used to model it
 - HF content validated with dedicated studies (ATL-CONF-2013-099)
- Madgraph directly generates tt+bb/cc
 - expected to properly treat ME+PS matching of tt+HF
 - difference between generators taken as systematic uncertainty
- •pT of top quark and tt system reweighted to reproduce spectra obtained in 7 TeV analysis (ATL-CONF-2013-099).

Pre-fit description

- Regions optimized to increase sensitivity with difference S/sqrt(B)
- Best S/B for high N(jets)/N(b-tags)
- Out of the box MC normalizations
- Simulation models data satisfactorily across the board

MVA: S-B discrimination

- Train a Neural Network (NN) to separate S from B (tt+jets) simulations in each region
 - Uses a suite of variables from event shape and kinematics, single experimental object kinematics
 - proper ranking per channel and per region
- Dedicated background normalization control regions are designed by cutting on $H_T = \Sigma p_T$ (selected jets)
- Designated signal regions have cut on NN discriminant

MVA: S-B discrimination

l+jets	2 b-tags	3 b-tags	4 b-tags
4 jets	CR (H _T	CR (H _T	CR (H _T
	cut)	cut)	cut)
5 jets	CR (H _T	HF/LF	SR (NN
	cut)	NN	cut)
\geq 6 jets	CR (H _T	SR (NN	SR (NN
	cut)	cut)	cut)

dilepton	2 b-tags	3 b-tags	4 b-tags
2 jets	CR (H _T cut)		
3 jets	CR (H _T cut)	SR (NN cut)	
\geq 4 jets	CR (H _T cut)	SR (NN cut)	SR (NN cut)

Post-fit description

- A profile likelihood fit is performed considering all regions simultaneously
 - reduces effect of systematic uncertainties thanks to high-stats, bkg enriched control regions

- Fit to data under the signal-plus-background hypothesis.
- Signal normalised to the fitted μ (=1.7)

Systematic uncertainties

Pre-fit

Systematic uncertainty	Туре	Components
Luminosity	Ν	1
Physics Objects		
Electron	SN	5
Muon	SN	6
Jet energy scale	SN	22
Jet vertex fraction	SN	1
Jet energy resolution	SN	1
Jet reconstruction	SN	1
b-tagging efficiency	SN	6
c-tagging efficiency	SN	6
Light jet-tagging efficiency	SN	12
Background Model		
tī cross section	N	1
t7 modelling: pT reweighting	SN	9
tī modelling: parton shower	SN	2
tt+heavy-flavour: normalisation	N	2
t7+heavy-flavour: HF reweighting	SN	2
tt+heavy-flavour: generator	SN	5
W+jets normalisation	Ν	3
W pT reweighting	SN	1
Z+jets normalisation	N	2
Z pT reweighting	SN	1
Multijet normalisation	Ν	3
Multijet shape dilepton	s	1
Single top cross section	Ν	1
Dibosons cross section	N	1
tiv cross section	Ν	1
Signal Model		
tīH modelling	SN	2

S=shape, N=normalization

- Observed (expected) 95% CLs limit 4.5 x SM (2.6 x SM) for m(H) = 125 GeV.
- Best fit signal strength $\mu_{ttH} = 1.7 \pm 1.0$
- Significance Observed (expected) : I.3 σ (0.8 σ)

Current Run I combo

• Observed (expected) 95% CLs limit : 3.9 x SM (2.3 x SM) for m(H)=125.4 GeV • Best fit signal strength: μ (ttH) = 1.6 ± 0.6 (stat)^{+1.1} -1.0 (syst.)

Current Run I combo

Run II prospects

- Higher E_{CM} beneficial for ttH search:
 - @ 13(14) TeV ~4x (5x) increase in σ_{SM} for signal
 - ~3x (4x) increase in σ_{SM} for tt+jets background
- Additional techniques (e.g. more multi variate analysis, Matrix Element search) in development to maximize signal-bkg discrimination
- Not many prospect studies exist for RunII/future

 $\Delta \mu / \mu$

expect to measure ttH at 3σ with 300 fb⁻¹ from di-photon channel alone (ATL-PHYS-PUB-2014-016)
much earlier from bb and multi-lepton channels
tens fb⁻¹ at 13 TeV?

	$gg \rightarrow H$	0.12	0.06	0.11	
5)	VBF	0.18	0.15	0.15	
	WH	0.41	0.41	0.18	
	qqZH	0.80	0.79	0.28	
	ggZH	3.71	3.62	1.47	
	ttH	0.32	0.30	0.16	

300 fb⁻¹

All unc. No theory unc.

Wednesday, 3 December 2014

3000 fb⁻¹

All unc. No theory unc.

0.04

0.09

0.18

0.27

1.38

0.10

Outlook

- ttH production mode being looked at with several, different final states
- Challenging both from detector and backgrounds point of view
- Closing on to SM xsec value
- This will be one of the first hot topics in Run II

Back-up

Other sources of background: simulation

- ttZ, ttW : Madgraph +Pythia
- W/Z +jets :Alpgen + Pythia
- 👶 Dibosons :Alpgen + Herwig
- Single top : PowHeg / Acer +Pythia
- Multijets : Estimated by using data driven methods