Recent Electroweak Results from ATLAS

- Electroweak Zjj
- VBS W[±]W[±]jj
- Z→4I
- Diboson Measurements
- Summary

Tiesheng Dai The University of Michigan On behalf of the ATLAS Collaboration

Workshop on Discovery Physics at the LHC, Kruger-2014 South Africa, Dec. 1-6 2014 **Electroweak Physics**

σ (pb)		
10 ⁴	Single W, Z Measurements A_{FB} in Z \rightarrow II	Precision EW sin²θ _w , (m _w)
501	Diboson Measurements Wγ, Zγ, WW, WZ, ZZ	т с
10-1	Single Z production $Z \rightarrow 4I (ZZ^*/Z\gamma^*)$	EWSB
10-2	Vector Boson Fusion (VBF) Zjj	2.5
10 ⁻³	Vector Boson Scattering (VBS) WWjj	QGC

Electroweak Zjj : VBF

8TeV, JHEP 04 (2014) 031

VBF : sensitive aTGC; Similar VBF Higgs production

Z-Bremsstrahlung

Non-resonant

 Electroweak Zjj has high mass, large separation tagging jets and less hadronic activity

Electroweak Zjj : Event selection

Fid region	N(jet,gap)	m(jj)	Zjj-QCD	Zjj-EW	WZ,ZZ	Тор
"search"	= 0	> 250 GeV	94.7%	4.0%	0.7%	0.6%
"high mass"	≥0	> 1 TeV	85%	12%	1%	2%

- POWHEG/Sherpa to model production
- Multijet background from data, others from MC
- Baseline, control and hight-pT regions to check Zjj and Zjj QCD modeling

Electroweak Zjj: Results

$\sigma_{\rm fid}$ (Zjj - EW) = 10.7±0.9(stat)±1.9(syst)±0.3(lumi) fb

 $\sigma_{\rm SM} = 9.38 \pm 0.05 (\text{stat})_{-0.24}^{+0.15} (\text{scale}) \pm 0.24 (\text{PDF}) \pm 0.09 (\text{model}) \text{ fb}$

≻Background only hypothesis excluded over 5σ

Complementary test of aTGCs on WWZ at 95% CL from search region

aTGC	Δg_1^Z
$\Lambda = 6$ TeV (obs) $\Lambda = 6$ TeV (exp)	[-0.65, 0.33] [-0.58, 0.27]
$\Lambda = \infty$ (obs) $\Lambda = \infty$ (exp)	$\begin{bmatrix} -0.50, 0.26 \\ [-0.45, 0.22 \end{bmatrix}$

aTGC	λ_Z
$\Lambda = 6$ TeV (obs) $\Lambda = 6$ TeV (exp)	[-0.22, 0.19] [-0.19, 0.16]
$\Lambda = \infty$ (obs) $\Lambda = \infty$ (exp)	$\begin{bmatrix} -0.15, 0.13 \\ [-0.14, 0.11 \end{bmatrix}$

VBS $W^{\pm}W^{\pm}$ jj : Introduction 8TeV, arXiv:1405.6241

VBS topology : two high momentum, forward jets

Sensitive to quartic gauge couplings (QGCs)

Violate unitarity without a SM Higgs

VBS W±W±jj : Event Selection

- Exactly two SS isolated leptons with p_T >25 GeV and $|\eta|$ <2.5
- MET > 40 GeV
- At least two jets with p_T >30 GeV and $|\eta|$ <4.5
- WZ veto: veto a third lepton with lower p_T and looser quality requirements
- Z veto: |m_{ee} − m_z| > 10 GeV to suppress the Z→ee contribution with the charge of one electron misidentified
- ttbar veto: no b-tagged jets in each event
- Inclusive region: m_{ii} > 500 GeV
- VBS region: m_{jj} > 500 GeV and |∆y_{jj}| > 2.4 → enhance the contribution from electroweak production

VBS W±W±jj : Event Display

VBS W[±]W[±]jj : Compare with MC

Enhance VBS contribution

VBS W±W±jj : Selected Events

Inclusive Signal Region							
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	Total			
$W^{\pm}W^{\pm}$ jj Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	16.9 ± 1.5			
$W^{\pm}W^{\pm}$ jj Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	4.8 ± 0.8			
$WZ/\gamma^*, ZZ, t\bar{t} + W/Z$	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	11.6 ± 2.5			
$W{+}\gamma$	1.1 ± 0.6	1.6 ± 0.8	—	2.7 ± 1.2			
OS prompt leptons	2.1 ± 0.4	0.77 ± 0.27	—	2.8 ± 0.6			
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	2.9 ± 0.8			
Total Predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	42 ± 5			
Data	12	26	12	50			

VBS Signal Region							
	$e^{\pm}e^{\pm}$	$e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$		Total			
$W^{\pm}W^{\pm}$ jj Electroweak	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4	13.9 ± 1.2			
$W^{\pm}W^{\pm}$ jj Strong	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08	1.34 ± 0.26			
$WZ/\gamma^*, ZZ, t\bar{t} + W/Z$	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5	8.2 ± 1.9			
$W + \gamma$	0.7 ± 0.4	1.3 ± 0.7	—	2.0 ± 1.0			
OS prompt leptons	1.39 ± 0.27	0.64 ± 0.24	—	2.0 ± 0.5			
Other non-prompt	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19	2.3 ± 0.7			
Total Predicted	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8	29.8 ± 3.5			
Data	6	18	10	34			

VBS W±W±jj : Cross-section Measurement

 Profile likelihood ratio method used to extract the final cross sections from all three channels taken into account correlated systematics

 $L(\sigma_{W^{\pm}W^{\pm}jj}, \mathcal{L}, \alpha_{j}) = \operatorname{Gaus}(\mathcal{L}_{0}|\mathcal{L}, \sigma_{\mathcal{L}}) \prod_{i \in \{ee, \mu\mu, e\mu\}} \operatorname{Pois}(N_{i}^{\operatorname{obs}}|N_{i, \operatorname{tot}}^{\operatorname{exp}}) \prod_{j \in \operatorname{syst}} \operatorname{Gaus}(\alpha_{j}^{0}|\alpha_{j}, 1)$

- Inclusive SR: σ = 2.1 ± 0.5 (stat) ± 0.3 (syst) fb, 4.5 σ obs. (3.4 σ exp.)
- VBS SR: $\sigma = 1.3 \pm 0.4$ (stat) ± 0.2 (syst) fb, 3.6 σ obs. (2.8 σ exp.)
- First ever evidence for EWK VV \rightarrow VV scattering at the LHC

VBS W±W±jj : QGC Limits

Use measured "VBS" cross section to limit aQGCs:

$$\rightarrow$$
 First limitation on α_4, α_5

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_d \sum_i \frac{\alpha_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- WWVV aQGCs are α_4 and α_5
- Lowest dimension (8) operators

 $\alpha_4 \propto$ [-0.139, 0.157] obs. [-0.104, 0.116] exp. $\alpha_5 \propto$ [-0.229, 0.244] obs. [-0.180, 0.199] exp.

$\mathbb{Z} \rightarrow \mathbb{A}$: Introduction

arXiv:1403.5657

gg fusion ~0.1%

* Phase space m4l=[80,100]GeV, m2l>5GeV

Physics Motivations

➤ A SM test from a rare decay process
 ➤ A complementary test of the detector response for H→ 4I

Calibration for new physics discovery

Event Selections

- e: $p_T > 20, 15, 10, 7 \text{ GeV}, |\eta| < 2.5$

 $m_{12} (\ell^+ \ell^-)$ > **20** GeV, $m_{34} (\ell^+ \ell^-)$ > **5** GeV 80 GeV < m_{41} < 100 GeV

$Z \rightarrow 4I$: Mass and Cross-section

Good agreement with prediction, and measurement error still dominated by statistic

Z→4I : Branching Ratio

□ s-channel only

 \Box Normalized to high statistic Z \rightarrow 2 μ cross section

□ Cancels luminosity uncertainty and theoretical uncertainty of $\sigma(pp \rightarrow Z)$ □ Derive the BR(Z→4I) as:

$$BR(Z \to 4\ell) = BR(Z \to 2\mu)(1-f_t) \frac{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{4\ell} (C \times A)^{2\mu}}{\left(N_{\text{obs.}} - N_{\text{bkg.}}\right)^{2\mu} (C \times A)^{4\ell}}$$

Uncertainty on $BR(Z \rightarrow 2\mu)$ is small. f_t = fraction of *t*-channel in phase-space.

$$f_t = (3.35 \pm 0.02)\%$$
 for 4e, 4 μ ; $f_t = (3.90 \pm 0.02)\%$ for 2e2 μ

Quantity	\sqrt{s}	Value
Measured	7 TeV 8 TeV Combined	$(2.67 \pm 0.62 \text{ (stat)} \pm 0.14 \text{ (syst)}) \times 10^{-6}$ $(3.33 \pm 0.27 \text{ (stat)} \pm 0.11 \text{ (syst)}) \times 10^{-6}$ $(3.20 \pm 0.25 \text{ (stat)} \pm 0.12 \text{ (syst)}) \times 10^{-6}$
Expected		$(3.33 \pm 0.01) \times 10^{-6}$

7TeV WW+WZ : Cross-section

arXiv:1410.7238

Final state : WW+WZ \rightarrow lv qq (e/ μ E_T^{miss} two jets)

61.1±2.2pb

NLO SM

				00000			
Signal processes	e	μ	e/	22000 F	ATLAS		
WW	1435 ± 70	1603 ± 79	G	20000	$\int I dt = 4.6 \text{fb}^{-1}$		-
WZ	334 ± 23	370 ± 26	/ 2	10000E	$\int L dl = 4.0 lb$	Data	=
Background processes			ts		\s = / IeV	WW/WZ	-
W+ jets	$(107 \pm 21) \times 10^3$	$(116 \pm 23) \times 10^3$	- le	16000	<u> </u>	top quarks	-
Z+ jets	$(55 \pm 11) \times 10^2$	$(46.3 \pm 9.3) \times 10^2$	ы	14000E		multijet	_
$t\bar{t}$	$(47.2 \pm 7.1) \times 10^2$	$(47.2 \pm 7.1) \times 10^2$		E		W/Z + jets	Ξ
Single-top	$(20.2 \pm 3.0) \times 10^2$	$(20.5 \pm 3.1) \times 10^2$		12000			-
Multijet	$(67 \pm 10) \times 10^2$	$(50.5 \pm 7.6) \times 10^2$		10000Ē	1 L -	$W \rightarrow lv + 2 jet$	ts _
ZZ	19.2 ± 3.8	21.1 ± 4.2		Ē	. .		=
Total SM prediction	$(128 \pm 17) \times 10^{3}$	$(135 \pm 19) \times 10^{3}$	_	8000 F	$f = \lambda_{1}$		-
Total Data	127650	134846	_	6000	' <u>`</u>		-
			-	4000		1	_
Template fit used	to extract cros	s section					=
Monsurod & Con	cictont with SM	nradiction		2000			
ivieasureu o cons	SISTELL WITH SIM	prediction		oĽ	<u> </u>	150 000	050
~ 30% systematic	: uncertainty				50 100	150 200	250
			i	1.1E		I	
Management				1.05			∔I† I
ivieasured	68 ± /(sta	τ.) ± 19(svst.	dat	144	Summer and the second	AN WWWWWW	1 A A A A A A A A A A A A A A A A A A A

0.95

0.9

50

100

150

200

Dijet Mass [GeV]

250

7TeV WW+WZ : aTGC (LEP Scenario)

arXiv:1410.7238

An alternative approach from the SM in terms of an effective-field-theory (EFT),

$$\begin{split} \frac{c_W}{\Lambda^2} &= \frac{2}{m_Z^2} \Delta g_1^Z ,\\ \frac{c_B}{\Lambda^2} &= \frac{2}{m_W^2} \Delta \kappa_\gamma - \frac{2}{m_Z^2} \Delta g_1^Z ,\\ \frac{c_{WWW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \lambda , \end{split}$$

1D Limits at 95% CL

Parameter	Observed Limit	Expected Limit
c_{WWW}/Λ^2	$[-9.5, 9.6] \text{ TeV}^{-2}$	$[-11.6, 11.5] \text{ TeV}^{-2}$
c_B/Λ^2	$[-64, 69] \text{ TeV}^{-2}$	[-73, 79] TeV ⁻²
c_W/Λ^2	$[-13, 18] \text{ TeV}^{-2}$	$[-17, 21] \text{ TeV}^{-2}$

W+W- Cross-section : Overview

WW signal: qq \rightarrow WW, gg \rightarrow (H) \rightarrow WW $\sigma_{tot} = 58.7 \pm 3.0 \text{ pb}$ at 8TeV

arXiv:1307.1347

Previous LHC results show higher cross section than prediction

	$\int L$ (fb ⁻¹)	$\sigma(pp ightarrow WW) imes B$ (pb)	SM NLO*
ATLAS 7TeV	4.6	$51.9 \pm 2.0(stat.) \pm 3.9(syst.) \pm 2.0(lumi.)$	44.7 ±2.0
CMS 7TeV	4.9	$52.4 \pm 2.0(stat.) \pm 4.5(syst.) \pm 1.2(lumi.)$	-
CMS 8TeV	3.5	$69.9 \pm 2.8(stat.) \pm 5.6(syst.) \pm 3.1(lumi.)$	54.6±2.5

Phys. Rev. D 87, 112001 (2013); CMS PAS SMP-12-005, CMS PAS SMP-12-013

* Higgs contribution not included

W+W-: Selected Event Composition

Signature: two high-pt leptons and large MET (ee, μμ, eμ)

Backgrounds

- Top (ttbar, Wt), Z+jets, Other Diboson, W+jets

□ Selection

- Two leptons: Pt>25, 20 GeV
- Remove Z peak in same flavor channel
- Cut on relative E_T^{miss} , track-based p_T^{miss} , $\Delta \phi(E_T^{miss}, p_T^{miss})$ to reduce Z+jets
- Require zero jets (25GeV) to reduce Top

W+W- Cross-section at 8TeV

 $\sigma_{WW}^{tot} = 71.4 + 1.2_{-1.2}(stat) + 5.0_{-4.4}(syst) + 2.2_{-2.1}(lumi) \text{ pb}$

<2% statistical uncertainty ~8% systematic uncertainty About 2 σ higher than SM prediction

Systematic Uncertainties

Sources	$e^{\pm}\mu^{\mp}$	e^+e^-	$\mu^+\mu^-$
C _{WW} experimental uncertainties			
Pileup	1.3%	1.9%	2.0%
e trigger efficiency	0.3%	2.5%	_
μ trigger efficiency	0.3%	_	2.8%
Muon MS resolution	0.0%	_	0.1%
Muon ID resolution	0.5%	_	1.5%
Muon scale	0.1%	_	0.4%
Muon efficiency	0.4%	_	0.8%
Muon isolation/IP	0.6%	_	1.1%
Electron resolution	0.0%	0.2%	_
Electron energy scale	0.4%	1.4%	_
Electron efficiency	0.9%	2.0%	_
:	:	:	:
$E_{\rm T}^{\rm miss}$ soft term scale	2.3%	4.2%	3.8%
$p_{\rm T}^{\rm miss}$ soft term resolution	0.1%	0.0%	0.2%
$p_{\rm T}^{\rm miss}$ soft term scale	0.3%	0.6%	0.5%
Total experimental uncertainties	3.7%	6.3%	6.3%
$A_{WW} \times C_{WW}$ theoretical uncertainties			
Jet-veto requirement (theory)	3.3%	3.3%	3.3%
PDF	1.3%	1.6%	0.8%
Scale	1.5%	2.0%	1.8%
Total theoretical uncertainties	3.9%	4.2%	3.8%
Total (exp.+theo.)	5.4%	7.6%	7.4%

W+W- Cross-section : Comments

Comments of observed excess (20% difference v.s. 10% uncertainty)

- Full NNLO QCD qq calculation could increase the inclusive NLO qq σ
 - +5%, arXiv:1408.5243v1
- Sizable effect possible due to PDFs
 - +5% with ATLAS PDF, Phys.Rev.Lett. 109 (2012) 012001
- NNLO/LO k-factor for gg->WW non resonant contribution
 - \circ If assume same k-factor as gg->H->WW, will see +5% increase on total σ
- Modelling on the gluon resummation
 - A few percent to O(10%) effect on fiducial cross section
 - o arXiv:1407.4481v1, arXiv:1407.4537v1

Other possible effects at or smaller than O(1%) level to total cross section

• NLO electroweak correction, $\gamma\gamma$ ->WW, vector boson scattering, double parton interaction

Diboson Cross-section Results Compare with MC

Diboson Cross	Section Measurements	Status: July 2014	∫£ dt [fb ^{−1}]	Reference
$\sigma^{\rm fid}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	$\sigma = 44.0 \pm 0.0 + 3.2 - 4.2 \text{ pb (data)}$ 2 γ NNLO (theory)		4.9	JHEP 01, 086 (2013)
$\sigma^{\rm fid}(W\gamma \to \ell \nu \gamma)$	$\sigma = 2.77 \pm 0.03 \pm 0.36 \mathrm{pb} \; \mathrm{(data)} \\ \mathrm{MCFM} \; \mathrm{(theory)}$	•	4.6	PRD 87, 112003 (2013)
$-[n_{\rm jet}=0]$	$\sigma = 1.76 \pm 0.03 \pm 0.22 { m pb}$ (data) MCFM (theory)	•	4.6	PRD 87, 112003 (2013)
$\sigma^{\rm fid}(Z\gamma \to \ell\ell\gamma)$	$\sigma = 1.31 \pm 0.02 \pm 0.12 ~{\rm pb}$ (data) MCFM (theory)	• ATLAS Preliminary	4.6	PRD 87, 112003 (2013)
$-[n_{jet}=0]$	$\sigma = 1.05 \pm 0.02 \pm 0.11$ pb (data) MCFM (theory)	Run 1 $\sqrt{s} = 7, 8$ TeV	4.6	PRD 87, 112003 (2013)
$\sigma^{\text{total}}(pp \rightarrow WW + WZ)$	$\sigma = 72.0 \pm 9.0 \pm 19.8$ pb (data) MCFM (theory)	•	4.7	ATLAS-CONF-2012-157
$\sigma^{ m fid}({ m W}^{\pm}{ m W}^{\pm}{ m jj})$ EWK	$\sigma = 1.3 \pm 0.4 \pm 0.2 \text{ (b (data)} \\ \text{PowhegBox (theory)} \\ \end{array}$	▲	20.3	arXiv:1405.6241 [hep-ex]
$\sigma^{\text{total}}(\mathbf{pp} \rightarrow \mathbf{WW})$	$\begin{array}{l} \sigma=51.9\pm2.0\pm4.4~\mathrm{pb}~\mathrm{(data)}\\ \mathrm{MCFM}~\mathrm{(theory)}\\ \sigma=71.4\pm1.2\pm5.5=4.9~\mathrm{pb}~\mathrm{(data)}\\ \mathrm{MCFM}~\mathrm{(theory)} \end{array}$		4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-033
$-\sigma^{fid}(WW o ee)$	$\sigma = 56.4 \pm 6.8 \pm 10.0$ fb (data) MCFM (theory)	•	4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW o \mu\mu)$	$\sigma=73.9\pm5.9\pm7.5~{\rm fb}~({\rm data})\\{\rm MCFM}~({\rm theory})$		4.6	PRD 87, 112001 (2013)
$-\sigma^{\text{fid}}(WW o \mathbf{e}\mu)$	$\sigma = 262.3 \pm 12.3 \pm 23.1$ fb (data) MCFM (theory)	• LHC pp $\sqrt{s} = 7$ TeV	4.6	PRD 87, 112001 (2013)
$\sigma^{\text{total}}(\mathbf{pp} \rightarrow \mathbf{WZ})$	$ \sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)} \\ \text{MCFM (theory)} $	Theory Data	4.6 13.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021
$-\sigma^{fid}(WZ \to \ell \nu \ell \ell)$	$\sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2 \text{ (b)} \text{ (data)} $ MCFM (theory)	stat stat+syst	13.0	ATLAS-CONF-2013-021
$\sigma^{\text{total}}(\mathbf{pp} \rightarrow \mathbf{ZZ})$	$\sigma = 6.7 \pm 0.7 + 0.5 = 0.4 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 7.1 + 0.5 = 0.4 \pm 0.4 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 76.0 \pm 18.0 \pm 4.0 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \text{MCFM (theory)} \\ \sigma = 76.0 \pm 18.0 \pm 4.0 \text{ pb (data)} \\ \text{MCFM (theory)} \\ M$	LHC pp $\sqrt{s} = 8$ TeV	4.6 20.3 4.5	JHEP 03, 128 (2013) ATLAS-CONF-2013-020 arXiv:1403.5657 [hep-ex]
$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell$	Powheg (theory) $\sigma = 1070.4 \pm 0.0 $	Theory	20.3	arXiv:1403.5657 [hep-ex]
$-\sigma^{fid}(ZZ o 4\ell)$	$\sigma = 20.7 + 1.3 - 1.2 \pm 1.0 \text{ theory}$ $\sigma = 20.7 + 1.3 - 1.2 \pm 1.0 \text{ theory}$	→ Data stat stat	4.6 20.3	ATLAS-CONF-2013-020
$-\sigma^{fid}(ZZ^* \to 4\ell)$	$\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9 \text{ (b) (data)}$ PowhegBox & gg2ZZ (theory)	•	4.6	JHEP 03, 128 (2013)
$-\sigma^{\rm fid}(ZZ^*\to\ell\ell\nu\nu)$	$\sigma = 12.7 + 3.1 - 2.9 + 1.8 \text{ (b) (data)} \\ \text{PowhegBox \& gg2ZZ (theory)}$		4.6	JHEP 03, 128 (2013)
	0.2 0.4 0.6 0.8 1	0 1.2 1.4 1.6 1.8 2.4	0	
		data/theory		

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Summary

Electroweak Zjj

 \succ First observation over 5 σ

Cross-section measured in multi-phase spaces

Complementary constrain on aTGC

Vector Boson Scattering W[±]W[±]jj

First evidence of VBS

Cross-section measured with 30% precision

Z→4I

> Rare Z decay process cross-section measured to ±10%

S-channel branching ratio measured as SM prediction

Diboson

Most measured cross-sections agree with SM predictions except W⁺W⁻ with 2.1σ over expectation

Explored aTGC

Backup

Data collected at ATLAS

Mean Number of Interactions per Crossing

Integrated luminosity for physics analysis

4.6 fb⁻¹ at 7 TeV 20.3 fb⁻¹ at 8 TeV

Data taking efficiency ~ 94%

Detector operation fraction > 97%

Very stable detector performance

Demonstration of an event with O(25) vertices

Crucial to correct for the pile-up effects in momentum and energy measurements

Reconstruction Performance e, μ

Precise calibration of energy scale and resolution for e/μ and Good modelling in MC

Reconstruction Performance γ, E_T^{miss}

Precise energy scale / resolution determination for photon Good modelling of pileup effects for E_T^{miss}

Good detector calibration and Well simulated MC are essential for precision measurement

Weak Mixing Angle : Data Events

ATLAS-CONF-2013-043

- 4.8fb⁻¹ (4.7fb⁻¹) of data recorded at 7 TeV in ee (μμ) channel
- sample selection:
 - opposite charge is required for muons or two central electrons (CC)
 - only central electrons with tight quality are paired with forward electrons (CF)
 - ▶ dilepton mass 66 GeV < m_{ℓℓ} < 1 TeV (or < 250 GeV for CF)
- background composition:
 - data-driven: multijet three (four) orders of magnitude less than ee (μμ) signal
 - Monte Carlo: diboson, $Z \to \tau \tau$, $t\bar{t}$

Weak Mixing Angle : Measurement Results

ATLAS-CONF-2013-043

 measurement of forward-backwardasymmetry

 $A_{\rm FB} = \frac{\sigma_{\rm forward} - \sigma_{\rm backward}}{\sigma_{\rm total}}$

- dominant systematics: PDF uncertainty followed by MC statistics
- determination of leptonic effective weak mixing angle $\sin^2 \theta_W^{\text{eff}}$:
 - extracted with templates and χ^2 fit to data for $m_{\ell\ell} = 70 250 \text{ GeV}$
 - combined result:

 $\sin^2 \theta_W^{\text{eff}} = 0.2297 \pm 0.0004 \text{(stat)} \pm 0.0009 \text{(syst)}$

 $= 0.2297 \pm 0.0010$ (tot)

- 1.8 standard deviations with respect to PDG best fit value
- first measurement from hadron collider combining electron/muon final state to determine sin² θ^{eff}_W at Z pole

Electroweak Zjj: Data and MC Comparision

Search Region

Baseline Region

Electroweak Zjj : Results

Search region is used for a complementary test of aTGCs on WWZ at 95% CL

EW component measured in search region with $m_{ii} > 1$ TeV :

 $\sigma_{\rm fid}$ (Zjj-EW)=10.7±0.9(stat)±1.9(syst)±0.3(lumi) fb

 $\sigma_{\rm SM} = 9.38 \pm 0.05 (\text{stat})^{+0.15}_{-0.24} (\text{scale}) \pm 0.24 (\text{PDF}) \pm 0.09 (\text{model}) \text{ fb}$

Background only hypothesis excluded over 5σ

aTGC	Δg_1^Z
$\Lambda = 6$ TeV (obs) $\Lambda = 6$ TeV (exp)	[-0.65, 0.33] [-0.58, 0.27]
$\Lambda = \infty \text{ (obs)} \\ \Lambda = \infty \text{ (exp)}$	[-0.50, 0.26] [-0.45, 0.22]

aTGC	λ_Z
$\Lambda = 6$ TeV (obs)	[-0.22, 0.19]
$\Lambda = 6$ TeV (exp)	[-0.19, 0.16]
$\Lambda = \infty$ (obs)	[-0.15, 0.13]
$\Lambda = \infty$ (exp)	[-0.14, 0.11]

VBF Higgs Search at ATLAS

- Searched for H→γγ, ZZ*, WW*, ττ, bb production in VBF modes
- No 3σ evidence observed in each individual channel yet

Anomalous QGCs

- Anomalous quartic couplings modify the expected cross sections
- We would like to set limits on possible new physics using the measured cross sections in a model-independent way
 - Use the effective Lagrangian:

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d} \sum_{i} \frac{\alpha_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- Can introduce unphysical predictions at high energies
- Requires unitarization scheme
- Consider the chiral Lagrangian approach as implemented in WHIZARD (JHEP 11(2008) 010):
 - The terms that affect WWVV QGCs are α_{4} and α_{5}
- Indirect constraints from electroweak precision data (Eboli et al, PRD 74, 073005 (2006), 99% CL bounds):

-0.35 < α_4 < 0.06 and -0.87 < α_5 < 0.15

$Z \rightarrow 4I$: Introduction

arXiv:1403.5657

- ☆ Rare decay of Z→4ℓ production was first observed at the LHC by both ATLAS and CMS experiments along with the Higgs boson discovery in the 4ℓ decay channel
- Cross section measurement of the Z→4ℓ production provides
 A SM test for a rare decay process (measurements of σ(4ℓ) and BR(Z→4ℓ))
 A complementary test of the detector response for H→4ℓ detection

✤ Z→4l standard candle in calibration 4l analysis, such as Higgs

$Z \rightarrow 4I: Modeling$

 $(\mathbf{P}) = (\mathbf{P}) = ($

 $qq \rightarrow Z/Z^*Z^* \rightarrow 4\ell$ modeled by Powheg MC for

- Cross section calculations (NLO QCD)
- Event generations (interfaced to PYTHIA)
- gg \rightarrow ZZ \rightarrow 4 ℓ modeled by GG2ZZ MC for
- Cross section calculations (LO QCD)
- Event generations (interfaced to Herwig/Jimmy) MCFM MC used to cross check cross sections

CalcHEP MC (LO QCD) used to calculate the magnitude of interference between the s-channel and the t-channel 4*l* production processes

~0.2% in the 4ℓ phase space

80< m₄₁ < 100 GeV, m₂₁>5 GeV

 treat it as systematic uncertainty when determine the Z→4l branching fraction

$Z \rightarrow 4I$: Detection Challenge

- The Z→4ℓ process is dominant by low mass m₃₄ and low pT leptons (the pTordered 4th leptons)
- Need to detect low pT leptons

ATLAS $Z \rightarrow 4\ell$ selection:

e : $p_T > 20$, 15, 10, 7 GeV, $|\eta| < 2.5$ μ : $p_T > 20$, 15, 8, 4 GeV, $|\eta| < 2.7$ $m_{12} (\ell^+ \ell^-) > 20$ GeV, $m_{34} (\ell^+ \ell^-) > 5$ GeV 80 GeV < $m_{41} < 100$ GeV

< 1% backgrounds expected from:
 >Z+Jets and ttbar from data-driven method
 >WZ, gg ! ZZ and decays from Z from MC

$Z \rightarrow 4I$: Cross-section Results

ATLAS measurement in final phase space $80 < m_{41} < 100 \text{ GeV}$ and $m_{\ell+\ell-} > 5 \text{ GeV}$

 $\sigma_{Z \to 4\ell}^{total} = \frac{\sigma_{Z \to 4\ell}^{fiducial}}{A_{Z \to 4\ell}}$

*The 4e and 4 μ channels, and The 2e2 μ and 2 μ 2e channels are combined with 2x2 covariance error matrices for σ measurement

*The 4I $\sigma^{\text{total}} = \sigma(4e+4\mu) + \sigma(2e2\mu)$, uncertainties are determined by 4x4 error matrices

*****Good agreement with prediction, and measurement error still dominated by statistic

ATLAS	Phase-space cross section (m ₂₁ > 5 GeV, 80 < m ₄₁ < 100 GeV)
7 TeV measured	76 \pm 18 (stat.) \pm 4 (syst.) \pm 1.4 (lumi.) fb
7 TeV NLO SM prediction	90.0±2.1 fb
8 TeV measured	107 \pm 9 (stat.) \pm 4 (syst.) \pm 3.0 (lumi.) fb
8 TeV NLO SM prediction	104.8±2.5 fb

7TeV Wy, Zy Cross-sections

Final state: W $\gamma \rightarrow I \nu \gamma$	Final state: $Z\gamma \rightarrow II \gamma$ or $Z\gamma \rightarrow vv \gamma$
+ signature: e/μ , E_T^{miss} , γ , $\Delta R(l, \gamma) > 0.7$	+ signature: ee/ $\mu\mu$ or E_T^{miss} , γ , $\Delta R(l, \gamma) > 0.7$
+ backgrounds: Z+jets, γ +jets, ttbar, τ decays	+ backgrounds: Z+jets, W+X, $ au$ decays
+ S/B ~ 1.5	+ S/B > 5

Typical uncertainty at 5 – 10%, dominated by photon ID systematics Exclusive region defined with zero jet (30GeV)

Phys. Rev. D 87, 112003 (2013)

8TeV WZ Cross-section

Event selection (WZ->3l+v):

- \circ Three isolated leptons (p_T >15GeV)
- \circ m_{ll} consistent with Z mass within 10GeV, pair of leptons with min $|m_{ll}-m_Z|$ to form a Z
- \circ Third lepton (W lepton) p_T >25GeV
- $\circ E_T^{miss}$ > 25 GeV, m_T^W >20GeV

With 13 fb⁻¹ pp collision data at 8 TeV

Backgrounds and Uncertainties:

- Z+jets, Top: data-driven
- \circ ZZ, W/Z+ γ : MC
- $\circ~$ ~1000 candidates, S/B ~ 3
- $\circ~$ Uncertainties on measured σ
 - about 4% stat. error
 - 7% syst. Uncertainty (bkg., lepton, lumi.)

Consistent with NLO prediction

8TeV ZZ Cross-section

Event selection (ZZ->4I):

 $\circ~$ Four isolated leptons ($p_T>7{\rm GeV}$), at least one lepton with $p_T>25{\rm GeV}$

Backgrounds and Uncertainties:

- Background: 2I+X, 3I+X \rightarrow data driven
- ~300 candidates, S/B ~ 10 (Clean!)
- $\circ~$ Uncertainties on measured σ
 - about 7% stat. error
 - 5% syst. (lepton, lumi.)

σ_{ZZ}^{total} [pb] NLO QCD (MCFM, CT10.0) ATLAS Preliminary Events / 20 GeV 90 ZZ (pp) (66<m,<116 GeV) Data **ATLAS** Preliminary ZZ (pp) (66<m_<116 GeV) 80 ΖZ .dt = 20 fb⁻¹ Background 70 vs = 8 TeV10 Total Uncertainty 60 ZZ→IIII 66<*m*₁₁<116 GeV 50F LHC Data 2012 (Is=8 TeV) 40E ○ ATLAS ZZ \rightarrow IIII (66<m <116 GeV) L=20 fb⁻¹ ∇ CMS ZZ→ IIII (60<m,<120 GeV) L=5.3 fb⁻¹ 30E LHC Data 2011 (s=7 TeV) ATLAS ZZ \rightarrow II(II/vv) (66<m₂<116 GeV) L=4.6 fb⁻¹ 20E CMS ZZ \rightarrow IIII (60<m_<120 GeV) L=5.0 fb⁻¹ Tevatron (Is=1.96 TeV) 10<u>⊢</u> D0 ZZ \rightarrow II(II/vv) (60<m_u<120 GeV) L=8.6 fb⁻¹ CDF ZZ \rightarrow II(II/vv) (on-shell) L=6.0 fb 100 200 300 500 400 600 700 800 900 2 8 10 12 14 0 4 6 Four-Lepton Mass [GeV] vs [TeV]

With 20 fb⁻¹ pp collision data at 8 TeV

ATLAS-CONF-2013-020

W+W-: Background Estimation

Data-driven Background estimation (relative uncertainty in bracket)

- Top: ttbar + single top (10%)
 - jet veto efficiency measured from data in b-tagged control region. Apply this efficiency on data events with inclusive jet bins to extract to signal region
- ✤ Z+jets (20%)
 - Likelihood fit on both Z+jets dominated control region and signal region with only free parameters of signal and Z+jets normalization, systematics considered as nuisance parameter, and other backgrounds fixed as their data-driven yields.

✤ W+jets (50%)

- Rely on the measured jet faking lepton probability from dijet events (f) and the real lepton selection efficiency (r) to determine the true origin of reconstructed events
- $\circ \quad Truth \times Matrix(f,r) = Reco$ $Truth = Reco \times Matrix^{-1}(f,r)$
- Major systematics: jet flavor composition

W+W- Cross-section at 8TeV

Signal acceptance and uncertainty (PowHeg + Pythia 8)

Channels	C_{WW}	$A_{WW} imes C_{WW}$
evμv	0.511 ± 0.025	0.116 ± 0.007
evev	0.291 ± 0.021	0.025 ± 0.002
μνμν	0.471 ± 0.033	0.044 ± 0.004

Overall efficiency ~ 10%

uncertainty ~ 6% (Lepton, Jet, MET, JVSF*)

* Use Z events in data to constrain MC jet-veto efficiency: SF = $\frac{\varepsilon_Z^{data}}{\varepsilon_T^{MC}} \sim 1$

<2% statistical uncertainty ~8% systematic uncertainty About 2 σ higher than SM prediction