SEARCHES FOR MASSIVE TOP AND BOTTOM QUARK PARTNERS AT CMS ANDREW IVANOV KANSAS STATE UNIVERSITY ON BEHALF OF THE CMS COLLABORATION

KRUGER2014 3™ BIENNIAL WORKSHOP ON DISCOVERY PHYSICS AT LHC, SKUKUZA, SOUTH AFRICA DECEMBER 5, 2014

Massive Partners of Top and Bottom Quarks Supersymmetry

 In supersymmetry the hierarchy problem is solved via contributions from superpartners:

$$\Delta m_h^2 = \frac{1}{8\pi^2} \lambda_t^2 (m_{\tilde{t}}^2 - m_t^2) \ln(\frac{\Lambda}{m_h}) \approx 0$$

• Stop is a bosonic partner of the top quark

Alternative Solutions to Hierarchy Problem

- Fermionic partners of top quark cancel the top corrections to the Higgs fermions
- New fermions are vector-like

Alternative Solutions to Hierarchy Problem

- Fermionic partners of top quark cancel the top corrections to the Higgs fermions
- New fermions are vector-like

Vector-Like Fermions

- Vector-like quarks are 4th generation quarks with quantum numbers different from Standard Model quarks
- Couplings to W,Z are symmetric or "vector-like"
- Both chiralities have the same representation under the electroweak group $SU(2)_L \times U(1)_Y$
- Vector-like quarks appear in
 - GUT, Composite top, Composite Higgs, Little Higgs
 - Warped extra dimensions
 - Non-minimal super-symmetric extensions
- Cancel quadratic divergences in the Higgs mass induced by radiative corrections in top quark

Chiral vs Vector-like Matter

• Chiral Matter

An object that cannot be superimposed on its mirror image

Vector-Like Matter

Superimposable mirror images

Vector-Like Quarks

	SM	Sin	glets	Doublets		ets	Triplets	
	$\left(\begin{smallmatrix} u \\ d \end{smallmatrix}\right) \left(\begin{smallmatrix} c \\ s \end{smallmatrix}\right) \left(\begin{smallmatrix} t \\ b \end{smallmatrix}\right)$	(<i>t'</i>)	(b')	$\begin{pmatrix} X \\ t' \end{pmatrix}$	$\binom{t'}{b'}$	$\binom{b'}{Y}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix}$	$\begin{pmatrix} t'\\b'\\Y\end{pmatrix}$
$SU(2)_L$	2		1		2		3	3
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3	-1/3	1/6	7/6	-5/6	2/3	-1/3

Minimal model: $SO(5) \times U(1)/SO(4) \times U(1)$

$${f 5}_{SO(5)} o {f 4}_{SO(4)} \oplus {f 1}_{SO(4)} = ({f 2}_{SU(2)_L}, {f 2}_{SU(2)_R}) \oplus ({f 1}, {f 1})$$

From A. Deandrea presentation at this conference

Production Mechanism

- Pair-production, --modelindependent cross section,
- Dominant process at lower vector-like quark masses

- Single production, --modeldependent cross section
- Dominant process at higher vector-like quark masses

New particles

Searches at CMS

Leptons help for triggering and offer a clean signature

Searches at CMS

Boosted Objects

- At higher energies and heavier new particles produce boosted decay products
- We develop and employ new techniques based on the jet substructure using "fat" jets, reconstructed with Cambridge-Aachen algorithm

Boosted Objects

CMS-PAS-JME-13-006/007, CMS-PAS-BTV-13-001

Subjet energies are calibrated using W-peak Validation using semileptonic tt events CMS Preliminary, vs = 8 TeV, 19.6 fb⁻¹ CMS Preliminary, vs = 8 TeV, 19.6 fb⁻¹ -1200 0081 Ge //c²) 1600 GeV/c²) 1000 $m_W^{DATA} = 84.3 \pm 0.3 \text{ GeV/c}^2$ = 83.7 ± 0.2 GeV/c² m₩ LO 1400 (10 800 Events 1200 Events 1000 Data 600 Data 800 tŤ W+Jets W+Jets Non-W MJ 400 600 Z+jets Non-W MJ Single Top 400 Z+jets 200 Data fit Single Top 200 0 60 100 140 160 180 200 100 200 300 20 40 80 120 400 500 600 Hadronic W Jet Mass (GeV/c²) Reconstructed Top Quark Mass (GeV/c²) R = 0.8Boosted top quark R = 0.8, 1.5 $M_{W} = [60,130] \text{ GeV}$ decaying to $W \rightarrow qq$ Boosted W boson b boson and b quark q decaying to quarks a $M_{+} = [140, 250] \text{ GeV}$ Subjet b-tagging a to tag Higgs min M_{12} > 50 GeV M_H = [90,140] GeV ANDREW IVANOV, KSU

13

CMS-PAS-B2G-12-019

- Signature: lepton + >= 4 jets + 1 btag + MET
- Highly boosted W/Z/Higgs bosons may merge into single jets
- Use jet substructure techniques: V-tagging

Search for $B^{1/3} \rightarrow tW$ in $\ell + jets$

CMS-PAS-B2G-12-019

- Signature: lepton + >= 4 jets + 1 btag + MET
- Categorize events based on the number of V-tags
- Perform a fit to S_T distributions as a function of V-tag multiplicity
- Main Background is tt+jets

Search for B^{1/3} ->bZ in Di-leptons

CMS-PAS-B2G-12-021

- Target: at least one B->bZ, Z-> II
- Signature: 2 oppositely charged leptons, consistent with Z-mass + 1b-tag
- Search for resonance in the bZ invariant • mass distribution

CMS Preliminary 2012, L = 19.6 fb⁻

Q(NNLO)

 $\sqrt{s} = 8 \text{ TeV}$

 $BR(b' \rightarrow bZ) = 100\%$

650

 Observed limit Expected limit

Expected limit ±10

Expected limit ±20

700

@ 95 % C.L.

= 100%

750

M(b') (GeV/c²)

800

Search for B^{1/3} in SS Di-leptons

CMS-PAS-B2G-12-020

- Signature: 2 SS charged leptons, >= 4 jets,
 >= 1b-tagged jet
- Background fit to S_T distribution, 5 exclusive bins

b'→ tW :

b' →

tW:

$$b' \rightarrow t \rightarrow W^{+} \rightarrow t^{+} \psi \text{ or } q q$$

$$W^{+} \rightarrow t^{-} \psi \text{ or } q q$$

$$W^{+} \rightarrow t^{+} \psi \text{ or } q q$$

$$W^{+} \rightarrow t^{+} \psi \text{ or } q q$$

$$W^{+} \rightarrow t^{+} \psi \text{ or } q q$$

$$W^{+} \rightarrow t^{+} \psi \text{ or } q q$$

101

10-2

2000

1800

S_T [GeV]

1600

Search for B^{1/3} in SS Di-leptons

CMS-PAS-B2G-12-020

- Signature: 2 oppositely charged leptons >= 4 jets, 1b-tagged jet
- Background fit to S_T distribution, 5 exclusive bins

Search for B^{1/3} in Multi-leptons

CMS-PAS-B2G-12-021

- Signature: >=3 leptons

 (electrons, muons or
 hadronically decaying taus),
- >= 1 b-tag
- Events classified based on the # of leptons, lepton and jet flavor, $H_{\rm T}$ and $S_{\rm T}$

Search for B^{1/3} -> bH, H->bb

CMS-PAS-B2G-14-001

- All-hadronic channel
- Employ Higgs-tagging using jet substructure
- Subjet b-tagging
- Control region from inverted subjet b-tag requirements

B^{1/3} **Summary**

Observed

Search for T^{2/3} in Leptonic States

PLB 729 (2014) 149

- Combination of l+jets + di-/multilepton searches
- Lepton+jets: 1 isolated lepton + >=3 jets, either
 - 4th jet
 - Or W-tagged jet
- Boosted Decision Tree and multiple signal regions to maximize sensitivity
 - With and without W boson tags
 - With and without b-quark tags
- Multi-lepton analysis:
 - 12 categories, cut-and-count
 - SS DIL, OS DIL, + 3rd lepton

ANDREW IVANOV, KSU

CMS

Search for T^{2/3} in Leptonic States

PLB 729 (2014) 149

M_T > 696 GeV @ 95 % C.L. BR (T→Wb) = 50% BR (T→tH) = 25% BR (T→tZ) = 25%

Search for T^{2/3} in All-Hadronic State

CMS PAS B2G-14-002

- Optimized for T->tH
- Make use of the jet substructure techniques:
 - Top tagging
 - Higgs tagging via subjet b-tagging
- 1 Top-tagged, 1- and 2-Higgs tagged bins

ANDREW IVANOV, KSU

Search for $T^{2/3} \rightarrow tH, H \rightarrow \gamma \gamma$

CMS PAS B2G-14-003

Variable	Hadronic channel	Leptonic channel
$p_T^{lead}_{photon}$	$> \frac{3}{4}m_{\gamma\gamma}$ GeV	$> \frac{1}{2}m_{\gamma\gamma}$ GeV
$p_T^{sublead}_{photon}$	35 GeV	25 GeV
n _{jets}	≥ 2	≥ 2
\dot{H}_{T}	$\geq 1000 { m GeV}$	\geq 770 GeV
leptons	0	≥ 1
b tags	≥ 1	-

- Signature: lepton + >= 4 jets + 1 btag + MET
- Perform a full kinematic event reconstruction and reconstruct mass of the T quark
- Highly boosted W bosons may merge into single jets
- Make use of == 0 W-tag and == 1 W-tag events

ANDREW IVANOV, KSU

Search for $T^{2/3}$ in ℓ + jets

- Perform a fit to the reconstructed mass
- $S_T > 1240$ GeV cut optimized for the best sensitivity

Search for Q->Wq in l + jets

- Similar search in O-b-tag region
- Search for partners of the lightflavor SM quarks

M_T > 788 GeV @ 95 % C.L. BR (Q→Wq) = 100%

Summary Table

Conclusions

- Vector-like quarks provide a possible solution to the mass hierarchy problem and can stabilize the Higgs mass at the electroweak scale
- CMS has a rich physics program on searches for very heavy exotic quarks in a multiple number of final states
- Presented analyses based on 8 TeV dataset of 20 fb⁻¹ exclude vectorlike quarks up to masses of 800 GeV
- Preparation for LHC Run 2 is underway, where single production of these quarks is equally important

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

