measurements of the top-quark mass and properties at CMS

Kruger 2014

marc dünser

why are we interested in the top-quark?

it's by a margin the heaviest of all SM particles

-> might hint at new physics

its mass is one of the least precisely known parameters of the SM

-> only quark that decays before hadronization

-> together with m_W and m_H it can constrain the SM/new physics

measuring properties gives insight into the weak sector -> CKM matrix for example

what are we going to talk about?

focus on new measurements out of CMS!

measurements of the top-quark mass

-> different final states and different methods

combination of various top-mass measurements

- -> combining many results from CMS
- -> world combination including Tevatron

CMS measurement of top quark properties

- -> Wb/Wq ratio
- -> W helicity
- -> tt+boson

so what about the top mass?

fundamental parameter of the standard model

- -> it's also a free parameter, so it has to be determined experimentally
- -> it affects many theoretical predictions
- -> but we can measure it directly!

the CMS combination of m_t is currently 172.38 ± 0.66 GeV -> 3.8‰ relative error!

-> first combination of LHC+Tevatron:

173.34 ± 0.76 GeV (4.4‰ rel.err.)

CMS measurements in all the relevant decay modes at 7 and 8 TeV -> talk about 8 TeV today

4

how to measure the top quark mass?

ŝ

6

many 'conventional' methods employed

-> kinematic fit to the ttbar hypothesis
 -> construct ideograms/templates
 from MC

some 'alternative' approaches

- -> such as from the b-lifetime
- -> by fitting the shape of m_{lb}

examples of both in this talk!

measuring mt from mIb

a di-leptonic measurement without reconstructing the top -> instead make use of a relation between m_{Ib} and m_t

 $m_{lb}^2 = \frac{m_t^2 - m_W^2}{2} \left(1 - \cos\theta_{lb}\right) \xrightarrow{\text{endpoint}} \max(m_{lb}) \approx \sqrt{m_t^2 - m_W^2} \sim 153 \text{ GeV} \text{ (if } m_t \sim 173)$

select e[±]µ[∓] events with at least two jets and one b-jet

-> use the minimal m_{Ib}
with highest p_T b-jet
-> correct assignment in
roughly 85%

perform a template fit to the data i.e. measuring the MC mass

build different templates from MC and fit the distribution to it

-> calculate the $\chi^{\scriptscriptstyle 2}$ of data and MC

extract a top mass of 172.3 ± 1.3 GeV

also compare the data to fixed order in QCD from MCFM

- -> observe very similar results
- -> publish response matrix for the first time!

very similar results from MCFM:

-> m _t in LO:	171.5 ± 1.1 GeV
-> m _t in NLO:	171.4 ± 1.1 GeV

measuring m_t very precisely: lepton plus jets

the most precise measurement to date! it's a rather well defined final state

- -> kinematically fit the decay products to ttbar hypothesis
- -> measuring mt and a jet energy scale factor (JSF) at the same time!
- -> JSF constrained from the known W-mass

very pure sample with low backgrounds!

- -> 1 lepton, >=4 jets, ==2 b-jets
- -> require a goodness of fit prob. of > 0.2

largest systematic uncertainty due to flavor dependent jet energy scale

- -> compare PYTHIA and HERWIG++
- -> validate this by using different ME

$2D\,fit\,to\,m_t\,and\,JSF$

use the ideogram method to extract maximum information

results in a measured top mass of 172.04 ± 0.19 (stat.) ± 0.75 (syst.) GeV

- -> most precise measurement we have!
- -> overall JSF fitted to 1.007 ± 0.002 (stat.) ± 0.012 (syst.)
- -> removing the 2D fit (and JSF =1) would

result in **m**_t = 172.66 ± 0.11 ± 1.29 GeV

compared with other measurements

-> m_{Ib}: 172.3 ± 1.3 GeV
-> world: 173.3 ± 0.3 ± 0.7 GeV

-> well within errors!

adding a lepton to the final state

this analysis was performed blind!

-> 2 leptons of either flavor and opposite charge, >=2 jets, of which one b-tagged

adding another neutrino makes life a bit more complicated

- -> 8 solutions for every event and
- every top mass hypothesis
- -> re-reconstruct every event 500 times
 - smearing the jets
- -> recovery of 95% of events
- -> take solution with highest weight

working with roughly 70'000 events

-> statistically very sound. purity of 90%

fitting the MC mass

fit the MC and data and retrieve a mass of 172.47 ± 0.17 (stat.) ± 1.40 (syst.) GeV

- -> remarkable agreement with the previous results
- -> larger errors though

leading systematics from MC

-> factorization and renormalization scale, JES, and b-fragmentation dominate

going all hadronic

smallest branching ratio penalty, but a lot of jets and trigger

- -> events with 6 jets, high thresholds due to trigger $(4\times60 + 2\times30)$
- -> roughly 4'500 events

very similar analysis strategy to the previous two

- -> kinematic fit to the tt hypothesis
- -> fitting again 2D with JSF by constraining W-masses

again a template fit

fitting the MC mass again from templates at different masses

-> systematics now dominated by JES and pileup and hadronization

mass: 172.08 ± 0.36 (stat.) ± 0.83 (syst.) GeV

- -> JSF fitted to $1.007 \pm 0.003 \pm 0.011$ (again)
- -> m_t(JSF=1): **172.59 ± 0.27 ± 1.05 GeV**

again, impressive consistency with other CMS measurements!

-> learn something about jet energy scales in CMS as well!

combining the measurements of all final states within CMS

combining results from 3 years of running

-> (36 pb⁻¹ + 5 fb⁻¹) @ 7 TeV + 20 fb⁻¹ @ 8 TeV

using a method called BLUE (best linear unbiased estimator)

-> the tricky part is getting the correlations

	rematics	righti
		IIGIIL:
<i>J</i>		0

		2010			2011			2012		
		di-l	l + jets	di-l	l + jets	all-jets	di-l	l + jets	all-jets	
2010	di-l	1.00								
	l + jets	0.20	1.00							
	di-l	0.15	0.26	1.00						
2011	l + jets	0.09	0.15	0.37	1.00					
	all-jets	0.10	0.16	0.62	0.31	1.00				
	di-l	0.08	0.19	0.26	0.13	0.16	1.00			
2012	l + jets	0.07	0.10	0.22	0.39	0.27	0.27	1.00		
	all-jets	0.06	0.08	0.16	0.29	0.24	0.26	0.52	1.00	

combined mass:

172.38 \pm 0.10 (stat.) \pm 0.65 (syst.) GeV -> this is significantly better than the world average!

Total uncertainty

0.65

not actual values

short summary on mt

from σ_{ttbar} : <u>PLB 728 (2014) 496–517</u> b-lifetime: <u>CMS-PAS-TOP-12-030</u> combin.: <u>CMS-PAS-TOP-12-015</u>

very nice and precise measurements from CMS out lately

-> very, very consistent among themselves

					δ m/m	
m _{lb}	172.30	±	1.30	GeV	7.5 ‰	
from σ_{ttbar}	176.70	±	3.80	GeV	21.5 ‰	
b-lifetime	173.50	±	3.27	GeV	18.8 ‰	
l+jets	172.04	±	0.77	GeV	4.5 ‰	+ 2010 and 2011
ll+jets	172.47	±	1.41	GeV	8.2 ‰	versions
jets	172.08	±	0.85	GeV	5.0 ‰	
combined	172.38	±	0.66	GeV	3.8 ‰	

most accurate single measurement has less than half a percent error!
-> reach 3.8 per mill precision after combination!

properties of the top quark

many nice features measurable only with the top-quark

-> it's the only quark that decays before hadronization

some interesting measurements from a SM perspective

- -> ratio of t->bW/qW measuring V_{tb}
- -> W-helicity measurements
- **->** tt+X
- -> spin correlations
- -> couplings of the top quark to other particles (esp. higgs)
- -> top-pair charge-asymmetry

we can derive limits on new physics from the top's properties

- -> anomalous couplings
- -> contradict/confirm some interesting measurements

measuring the ratio bW/qW

unitarity of the CKM matrix provides information on the ratio

-> measuring V_{ub} and V_{cb} gives a **very** stringent limit on $|V_{tb}| = 0.999146^{+0.000021} -0.000046$ -> the ratio and V_{tb} are essentially the same thing: $R = |V_{tb}|^2$

additional interest comes from the Tevatron/DØ

-> overall ratio $\mathbf{R} = \mathbf{0.90} \pm \mathbf{0.04}$ -> $|V_{tb}| \sim 0.95$ -> di-lepton tt: $\mathbf{R} = \mathbf{0.86} \pm \mathbf{0.054}$ -> $|V_{tb}| \sim 0.93$

measured at CMS on 8 TeV data

-> also in di-leptonic channel
-> two opposite charge leptons
and at least two jets

extracting R from the (b-)jet multiplicity

if we know ε_b and ε_q we can write a probability to observe n-bjets

-> this is then proportional to R

systematics dominated by uncertainty on tagging efficiency

-> top mass uncertainty also contributes

measure the ratio from fitting the b-multiplicities

-> extract ratio

R = 1.015 ± 0.003 (stat.) ± 0.031 (syst.)

|V_{tb}| ~ 1.007

-> very consistent with CKM unitarity

spin information in single tops the W helicity

top decays before hadronization, so spin information is relatively directly observable

-> the W boson has either longitudinal or left- or right-handed helicity

-> the SM predicts the helicity fractions (F_i) with good accuracy

helicity angle between W in top restframe and down-fermion in W restframe

-> prob. distr. func. for this angle

$$\rho(\cos\theta_{\ell}^{*}) \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{\rm L} + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} F_{0} + \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{\rm F}$$

-> fit the distribution of $\cos(\theta_{\rm I})$ to the data

==1 lepton, ==2 jets (1b), not very pure

- -> but the contamination are tops as well, so
- -> this is a new measurement with single tops, the one from ttbar has been out for a long time!

spin information in single tops the W helicity

distributions in data agree well with expectation

- -> W+jets contribution is free in the fit
- -> F_R constrained by Σ $F_i = 1$

systematic uncertainties dominated by MC modeling and limited statistics

-> set limits on anomalous tWb couplings

	FL	Fo	F _R
theory	0.311 ± 0.005	0.687 ± 0.005	0.0017 ± 0.0001
CMS	0.298 ± 0.043	0.720 ± 0.054	-0.018 ± 0.022
CMS (tt)	0.350 ± 0.026	0.659 ± 0.027	-0.009 ± 0.021

measuring tt+W/Z

eventually measure tt-W/Z/higgs couplings

-> so far only cross section measurements

tt+W/Z measured in leptonic final states

-> same-sign, tri-, quadleptons-> nine signal regions in total

perform a simultaneous fit to both components!

-> obtain good agreement with SM

measured	theory
σ _{tt+W} 170 ⁺¹⁰⁰ -10 fb	206 +21-23 fb
σ _{tt+Z} 200 ⁺⁹⁰ -90 fb	197 ⁺²² -25 fb

measuring tt+gamma

CMS-PAS-TOP-13-011

statistically much easier than massive bosons

-> measure in muon+photon events

though

-> one muon, 4 jets, 2 b-jets,

systematics dominated by background modeling

-> top quark p_T spectrum and scale uncertainties as well

measure ratio R = $\sigma_{ttbar+\gamma}$ / σ_{ttbar} = (1.07 ± 0.28) x 10⁻²

-> extract cross section from ttbar cross section measurement

	measured	theory
$oldsymbol{\sigma}_{ ext{ttbar+photon}}$	2.4 ± 0.63 pb	1.8 ± 0.5 pb

summary of all things top

top quark mass precision has reached < 1 % precision!

- -> can help constrain the SM and new physics alike
- -> results from CMS systematically lower than Tevatron results

top quark properties seem very standard-model-like!

-> W helicity and V_{tb} just two of the interesting measurements -> charge asymmetry, ttbar spin correlations, jet multiplicities just some examples of what's more to come

the top quark continues to be a nice playing field at the LHC

-> statistical errors are becoming less and less important -> we're on the way to measure top-W/Z/higgs/gamma couplings in run2!

surely some exciting times ahead for top physics!

the end

Kruger 2014

marc dünser

EHzürich