

Single-top quark production cross section using the ATLAS detector

Cunfeng Feng on behalf of the ATLAS collaboration Shandong University, China

Kruger 2014, Kruger Gate, December 3, 2014

Outline

- Introduction
- Precision measurements of t-channel
 - Top-antitop cross section ratio
 - Differential cross section
 - Fiducial cross section
- Wt cross section measurement
- Search for s-channel production
- New physics search
 - FCNC in strong interaction
 - W', b*
- Summary

Introduction

t-channel

s-channel

tW

> LHC is top quark factory.

- 15M top quarks produced in 2011 and 2012
- In pair via strong interaction. $\sigma_{tot}=253$ pb@8TeV in LHC
- singly via electroweak interaction. $\sigma_{tot}=114$ pb@8TeV in LHC

Single top production in three modes

Why looking for single top

- Precision test of the standard model direct probe of the W-t-b coupling
- PDF constraints top/anti-top cross section ratio
- ✓ Sensitive to new physics
 - Flavor changing Neutral Currents, suppressed by GIM Mechanism
 - new particle: W' boson , b*

Main Backgrounds

Kruger 2014, C. Feng(SDU)

Backgrounds

-top pair, Z+jets: modelled using MC and scale to theory prediction at NNLO

- W+jets: MC modelling and data driven
- Multijet: derived from data with matrix method or

maximum-likelihood fit of a multijet model.

(a) Central electron channel in the signal region Miss ET distribution after t-channel event selection

100

50

Data-Pred. Pred.

0.2

150

t-channel @7TeV: ratio top/anti-top

arXiv:1406.7844, accepted by PRD

∠=4.59fb⁻¹

Top and anti-top quark production asymmetric in t-channel
Ratio R_t is sensitive to the ratio of u/d quark PDF

 $R_t = \frac{\sigma_t(t)}{\sigma_t(\bar{t})}$

- Smaller uncertainties due to partial cancelations of common uncertainties
- Signal sample simulated with POWHEG(4F)+Pythia6,CT104f
- Two neural networks training for each 2-jet and 3-jet channel
- Extracted XS by binned maximum-likelihood fit to NN out distribution
- HPR(High purity region): O_{NN}>0.8
 S/B~1(2) for l⁻(l⁺)

t-channel @7TeV: ratio top/anti-top

Kruger 2014.

arXiv:1406.7844, accepted by PRD

Top and anti top production cross section and ratio R_t

 $\sigma(tq) = 46 \pm 1 \text{ (stat.)} \pm 6 \text{ (syst.)} \text{ pb} \qquad = 46 \pm 6 \text{ pb},$ $\sigma(\bar{tq}) = 23 \pm 1 \text{ (stat.)} \pm 3 \text{ (syst.) pb} = 23 \pm 4 \text{ pb}$ a $R_t = 2.04 \pm 0.13 \,(\text{stat.}) \pm 0.12 \,(\text{syst.}) = 2.04 \pm 0.18$

t-channel total cross section at 7TeV

 $\sigma(tq+\bar{t}q) = 68 \pm 2(\text{stat.}) \pm 8(\text{syst.})\text{pb}$

t-channel @7TeV: Differential cross section

arXiv:1406.7844, accepted by PRD

Measured distribution of the top-quark pT, distorted by detector effects and acceptance effects.

Good agreement with NLO prediction

Normalized differential cross section of pT, agreement with the QCD NLO calculation.

t-channel@8TeV: Fiducial cross-section

-ATLAS-CONF-2014-007

- ➤ L=20.3fb⁻¹
- A neural network classifier used.
- Binned Max. likelihood fit to NN output to estimate the number v of signal events in fiducial volumeruger 2014, C. Feng(SDU)

t-channel@8TeV: Fiducial cross-section

-ATLAS-CONF-2014-007

 $\sigma_t = 82.6 \pm 1.2 \text{ (stat.)} \pm 11.4 \text{ (syst.)} \pm 3.1 \text{ (PDF)} \pm 2.3 \text{ (lumi.)} \text{ pb}$

Wt channel@8TeV: cross section

ATLAS-CONF-2013-100

s-channel@8TeV

arxiv:1410.0647 accepted by Phys. Lett. B

CKM matrix element V_{tb}

- $\checkmark\,$ Single top quark cross section is powerful to probe V_{tb}
- ✓ Allows to test BSM
- \checkmark $|V_{tb}|^2$ is extracted from the observed signal top-quark cross section

$$|V_{tb,\,obs}|^2 = \frac{\sigma_{t,\,obs.}}{\sigma_{t.\,SM}} \times |V_{tb,\,SM}|^2$$

Single-top channel	measurement	Lower limit @95% CL
T-channel@7TeV(4.59fb ⁻¹) arXiv 1406.7844	$ V_{tb} $ =1.02 \pm 0.07	0.88
T-channel@8TeV(20.3fb ⁻¹) ATLAS-CONF-2014-007	$ V_{tb} $ =0.97 \pm 0.10	0.78
Wt-channel@7TeV (2.05fb ⁻¹) PLB716(2012)142-159	$ V_{tb} = 1.03 \pm 0.19$	
Wt-channel@8TeV (20.3fb ⁻¹) ATLAS-CONF-2013-100	$ V_{tb} = 1.10 \pm 0.12$	0.72

Search for W' boson @8TeV

arXiv: 1410.4103, submitted to PLB

Massive gauge boson W' predicted by many BSM theories
Allowed decay

Decay	hadronic	leptonic
W' _l	\checkmark	✓ + SM interference
$W_{\rm R}^{\bar{\nu}}, m(\nu_{\rm R}) < m(W')$	\checkmark	\checkmark
$W_{\rm R}^{\prime\prime}, m(v_{\rm R}) > m(W^{\prime})$	\checkmark	_

- Signal modelling by MadGraph5+Pythia8+CTEQ6L1
- Cross section scaled to NLO
- Two scenarios W'_L: g'_L=g_{SM}, g'_R=0 W'_R: g'_R=g_{SM}, g'_L=0

$\mathcal{L}=20.3 fb^{-1}$

- Single lepton,2-3 jets, exactly 2 b-jets (ε=70%)
 - BDTs trained for each 2-jet and 3-jet event
 - Training signal: W'_{R} at mass=1.75TeV

Search for W' boson @8TeV

arXiv: 1410.4103, submitted to PLB

σ(pp→W'_L)×B(W'_L → tb) [pb] σ(pp→W'_R)×B(W'_R → t<u>b</u>) [pb] 10 ATLAS ATLAS Expected limit Expected limit $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ √s = 8 TeV. 20.3 fb⁻¹ Observed limit Observed limit 10^{2} ±1σ ±1σ ±2σ $\pm 2\sigma$ 10 10 10 10 10⁻² 10⁻² 1.5 2.5 2.5 0.5 2 0.5 1.5 2 W', mass [TeV] W'p mass [TeV]

W' mass limits @95% CL

- M(W'₁)>1.80TeV (expected: >1.57TeV), without interference with s-channel,
- M(W'_)>1.70TeV (expected: >1.54TeV), with interference with s-channel
- M(W'_R)>1.92TeV, (ecpected: >1.75TeV)

- the full BDT output. Hypotheses testing use log-likelihood
- Hypotheses testing use log-likelihood ratio

Search for single b* at 7TeV

PLB721(2013)171-189

 b^*

b

Search the excited b quark coupling to the third generation of fermions Generate with MADGRAPG+Pythia+CTEQ6L1

∠=4.7fb⁻¹

- cut based event discriminate

- Likelihood fit to the cut based distribution of $H_{\! T}$ and reconstruction mass

For purely left –handed coupling, M_{b*} >870 GeV @95% CL

FCNC in single top production @8TeV

ATLAS-CONF-2013-063

- FCNC highly suppress by SM, but enhanced in many BSM scenarios
- qg-> t-> lvb production has a good sensitivity
- *L*=14.2fb⁻¹
- Lepton trigger same as W' search
- Simulation with NLO generator MEtop
- Event selection: 1 lepton, 1 b-jet
- Neural network classifier
- Good agreement between data and predicted background
- Binned likelihood fit to the NN output to extract FCNC contribution

summary

- Open the era for precision measurement in single top quark production
 - High precision measurement in the t-channel
- All the measurement are in agreement with SM predictions.
- Show no new physics so far.
- LHC Run-II will push the energy frontier upward and provide higher statistics
- Top physics maybe the first place to find new physics

Thanks !

