NLO Heavy Quark Energy Loss in Strongly-Coupled Quark-Gluon Plasmas

W. A. Horowitz

University of Cape Town December 5, 2014

With many thanks to Ulrich Heinz, Ben Meiring, Razieh Morad, Chun Shen, and Derek Teaney

Kruger2014

What Are We Interested In?

 Discover emergent, manybody physics of **QGP** through consistent theoretical description of experimental data

Long Range Plan, 2008

Big Bang vs. Little Bang

ALICE Collaboration

12/5/14

Learning about QCD

- Use heavy ion collisions as testbed
 - T_{QGP} ~ 1 trillion degrees, 10,000 times hotter than center of Sun
 - Macroscopic collision energies:
 - RHIC ~ two mosquitoes colliding mid-air
- Various observables
 - Two large classes (non-exhaustive):
 - Low- p_T and High- p_T
- Low-p_T: see, e.g., Ulrich Heinz's excellent overview of th. & exp. collective effects

$\textbf{High-}p_{T}\textbf{ Observables}$

Learn about E-loss mechanism
Most direct probe of DOF

AdQ.CIFP Petanere

Tools for Studying QCD

Lattice

- Requires imaginary time correlators

- Difficult to compute quantities such as viscosity
- pQCD
 - Requires large momentum scale
- AdS/CFT
 - Requires Maldacena conjecture, theory with a dual

Why AdS at High- p_T ?

- Perturbatively, 3 couplings for rad E-loss
 Not known at which scale(s) couplings run
- $T_{QGP} \sim \Lambda_{QCD} \Rightarrow g(2\pi T) \sim 2$
 - Always "small" scale in problem
 - Perhaps low-Q² plasma physics dominates over high-Q² in E-loss physics?

Factorization not proven in AA

- Work here assumes all couplings strong
 Cf, e.g., Casalderrey-Solana et al. for
- alternative

Failure of Naïve LO AdS: Light High-p_T

Assume all couplings large

- Thermalization time very short
- In AdS setup, probe & gluon cloud indistinguishable from medium
 - Only makes sense to compare to jets, not single particles

Kruger2014

LO AdS for Heavy High- p_T

Assume all couplings large

Very different from usual pQCD and LPM $dp_T/dt \sim -LT^3 \log(p_T/M_q)$

Failure of LO AdS for Heavy High- p_T

Constrained by RHIC, oversuppresses LHC

Missing Physics?

- Lights:
 - Better jet prescription
 - Renormalized R_{AA}
 - Razieh Morad, Wed 3:30pm
 - Improved IC
 - Ben Meiring, Thurs 2:30pm
- Heavies:
 - Within limits of calculation?
 - Higher order corrections?

Improved AdS Jet Prescription?

- All approximations to a full $T^{\mu\nu}$ calc.
- Original jet defined by spatial proximity
- New suggestion: separation by E scale

AdS: No-nucleus Suppression

 Original proposed IC => anomalous vacuum suppression!

Suggests oversuppression artifact of string IC

See B Meiring parallel for work to more realistic IC

AdS: Exciting Renormalization

– Can we capture diff. btwn. naïve AdS pp & AA?

Define renormalized R_{AdS} = "R_{AA} / R_{pp}"; cf CMS

– Use reasonable λ = 12 <=> α_s = 0.3: **no fitting**

Limits on Heavy Flavor AdS Setup

numerically smaller

Trailing String "Brachistochrone" "~" **D3 Black Brane**

HQ p_T Limits

WAH, PhD Thesis, arXiv:1011.4316

Including Fluctuations in AdS HF

$$\frac{dp_i}{dt} = -\eta_D + F_i^L + F_i^T$$
$$\langle F_i^L(t_1)F_j^L(t_2)\rangle = \kappa_L \,\hat{p}_i \hat{p}_j \,g(t_1 - t_2)$$
$$\langle F_i^T(t_1)F_j^T(t_2)\rangle = \kappa_T \left(\delta_{ij} - \hat{p}_i \hat{p}_j\right)g(t_1 - t_2)$$
$$\kappa_T = \pi \sqrt{g^2 N_c} T^3 \sqrt{\gamma}; \qquad \kappa_L = \pi \sqrt{g^2 N_c} T^3 \gamma^{5/2}$$

Gubser, NPB790 (2008)

- Obeys Einstein's relations only at v = 0
- Multiplicative Langevin problem!
 - Results depend on time within timestep kicks are evaluated
 - Ito, Stratonovich, Hänggi-Klimontovich
- Non-Markovian:
 - Colored (not white) noise
 - Momentum kicks have a memory

Discretizing Langevin

- Discretizing Riemann Calculus trivial
 - Sum converges regardless of bin widths and x* in bin as n increases
- Ambiguity in Ito Calculus

- Results depend on discretization procedure

Discretization Ambiguity and Einstein

• Ex: momentum space distribution of charm

- AdS fluctuations very diff from fluc-diss, which lead to relativistic thermal (Jüttner) distribution
- Huge diff btwn pre-point and mid-point

Resolving the Ambiguity

 $q_{T}(1)$

Saved by colored noise:

- Wong-Zakai Theorem:
 - As autocorrelation => 0, Langevin => Stratonovich

Model Calculations

- Input FONLL c, b production spectra
- Discretized Langevin through VISHNU
 2+1D viscous hydro
- FONLL FFs to B, D, e
- Uncertainty in map from QCD to N = 4 SYM
 - Explore systematics with two reasonable assumptions

•
$$\alpha_s = 0.3$$
, $T_{SYM} = T_{QCD}$

•
$$\lambda = 5.5$$
, $T_{SYM} = T_{QCD}/3^{1/4}$

p+p Baseline

Precision QCD is difficult

Compare to RHIC HF Electrons

- Agreement in sweet spot $p_T \sim 3 4$ GeV/c
 - Below 3 GeV production unreliable
 - Above 4 GeV theory corrections necessary (col. noise, non-const p)
- NB: VISHNU medium hotter than from previous calc => larger LO supp. 2/5/14 Kruger2014

Compare to LHC D Mesons

 Inclusion of fluctuations yields results qualitatively similar to D suppression

Kruger2014

Compare to LHC B => J/ψ

B suppression also in qualitative agreement

Conclusions

- Exciting times in QGP physics
- Very first, all strong-coupling jet R_{AA}
 - No parameter fitting
 - Consistent with preliminary CMS data
- Very first correct inclusion of fluctuations in HQ E-loss
 - No parameter fitting
 - Qualitatively consistent with RHIC, LHC data
- Prospect of consistent, strong-coupling picture of QGP from low- to high- p_T

2/5/14

Kruger2014

Andri Rasoanaivo

Bonus Material

D to B Ratio

 Fluctuations ruin flat, p_T-ind prediction of double ratio from LO AdS/CFT drag

Kruger2014

AdS Jet Suppression Sensitivity

 Stopping distance of light quark extremely sensitive to IC, e.g. virtuality

 Doubly infinite dimensional space of IC mostly unexplored 12/5/14 Kruger2014

LHC is Hard

- pQCD E-loss makes more sense
 - Constrained by RHIC, LO pQCD predictions strikingly similar to LHC data

New WHDG J/ ψ Comparison to CMS

• WHDG B + B => J/ψ decay

- Thanks to Andrea Dainese and Zaida Conesa Del Valle

Strongly Coupled HF and p+A

- Measure open HF in p+A
 - Midrapidity: test production
 - Forward: test CNM HF E-loss

E&M Particle Physics Well Understood

- Lagrangian known: $\mathcal{L}_{EM} = \bar{\psi} \left(i D m \right) \psi \frac{1}{4} F^2$
- QED Vertex:

• Ex. of Precision QED: g - 2

Gabrielse et al., PRL97 (2006)

$g/2 = 1.001\,159\,652\,180\,73(28)$ [0.28 ppt]

Hanneke, Fogwell, and Gabrielse, PRL100 (2008)

Kruger2014

E&M Many Body Physics

Many body physics less well understood

Kruger2014

E&M Many Body Physics (cont'd)

Phase Diagram for Water

High T_c Superconductors

http://for538.wmi.badw-muenchen.de//projects/ P4_crystal_growth/index.htm

http://ch302.cm.utexas.edu/svg302/ phase-diagram-water.svg

QCD Particle Physics

- Lagr. known: $\mathcal{L}_{QCD} = \sum \bar{\psi}_j \left(i \not D m_j \right) \psi_j \frac{1}{4} \left(F^a \right)^2$
- QCD Vertices:

 Quantitative agreement w/ data

Reminder of AdS Successes I

Rapid Thermalization

Reminder of AdS Successes II

- Bulk Properties
 - Leading order results reproduce well:
 - Energy density, entropy, shear viscosity

