

D-meson reconstruction with ALICE: present results and future perspectives

Outline

- Heavy Flavours in high energy heavy ion collisions: motivations.
- Nuclear modification factor and azimuthal anisotropy.
- Full reconstruction of D mesons with the ALICE detector:
 - \checkmark $R_{\rm AA}$: comparison with p-Pb, centrality and mass dependence.
 - ✓ Azimuthal anisotropy: v_2 .
 - ✓ Comparison with models.
- ALICE in the high luminosity LHC era: detector upgrade.
- Expected performance for D and B detection in the central rapidity region.

Nuclear modification factor: R_{AA}

- A nucleus-nucleus collision is not simply a superposition of nucleon-nucleon collisions.
- The effect of the produced medium is expressed by the nuclear modification factor R_{AA}
- The produced partons lose energy through radiative and collisional mechanisms in the hot and dense medium formed in A-A collisions
- Energy loss mechanisms are sensitive to colour charge and to the quark masses. Expectation:

$$\begin{aligned} R_{\rm AA}\left(p_{\rm T}\right) &= \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \\ \text{with} &< T_{\rm AA} > \propto < N_{\rm coll} > \end{aligned}$$

 $\Delta E_{\text{gluon}} > \Delta E_{\text{quark}}$

 $\Delta E_{\rm LF} > \Delta E_{\rm HF} \Longrightarrow \Delta E_{\rm uds} > \Delta E_{\rm c} > \Delta E_{\rm b}$

 $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$?

Heavy-flavour v₂

- Due to their large mass, c and b quarks should take longer time (= more re-scatterings) to be influenced by the collective expansion of the medium
 - ✓ $v_2(b) ≤ v_2(c)$
- Uniqueness of heavy quarks: are not destroyed and/or created in the medium
 - ✓ Transported through the full system evolution

 $8 \text{ impact parameters } \sim 100 \, \mu \, \text{m}$

Under study

- Reconstruction of D mesons through their hadronic decay channels in the ALICE barrel.
- $c\tau = 100-300 \ \mu m$
- Key detectos: ITS, TPC, TOF

	Decay mode	cτ (μm)	B.R.
	$D^0 \rightarrow K^- \pi^+$	123	3.89%
	$D^{*+} \rightarrow D^0 \pi \rightarrow K \pi \pi^+$	123 (D ⁰)	67.7%
inting	$D^+ \rightarrow K^- \pi^+ \pi^+$	312	9.22%
m	$D_s^+ \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+$	147	2.32%
ſ	$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$	60	5.0%
1	$\Lambda_{c}^{+} \rightarrow p\overline{K^{0}}$	60	2.3%

D-meson reconstruction

• D⁰, D⁺ and D*⁺ R_{AA} agree within uncertainties

- pp reference from measured D⁰, D⁺ and D* $p_{\rm T}$ -differential cross sections at 7 TeV scaled to
 - 2.76 TeV with FONLL
 - ✓ Extrapolated assuming FONLL p_T shape to highest p_T bins not measured in pp

Strong suppression of prompt D mesons in central collisions at intermediate – high p_T \rightarrow up to a factor of 5 for $p_T \approx 10 \text{ GeV/c}$

Comparison with p-Pb

- D suppression is larger in central than in peripheral **Pb-Pb** collisions
- R_{pPb} for D mesons \rightarrow compatible with unity within uncertainties
- Comparison of Pb-Pb with p-Pb results indicates that the observed suppression in Pb-Pb collisions is due to final state effects induced by the partonic medium

p-Pb: ALICE Coll. arXiv:1405.3452 [nucl-ex], accepted by PRL Nuclear modification factor ALICE -**--**- p-Pb, *∖s*_{NN}=5.02 TeV -0.96<*y*_{cms}<0.04 1.6 Average D^0 , D^+ , D^{*+} 1.4 $|y_{cms}| < 0.5$ centrality 0-20% 1.2 --- centrality 40-80% 0.8

• The results for the three D meson species are consistent within uncertainties. The suppression increases with centrality and reaches a factor of 5–6 in the most central events for both $p_{\rm T}$ intervals.

Charm + strange: D_s⁺

- First measurement of D_s⁺ in A-A collisions
- Expectation: enhancement of the strange/nonstrange D meson yield at intermediate p_T if charm hadronizes via recombination in the medium

- Strong D_s^+ suppression (similar as D^0 , D^+ and D^{*+}) for $8 \le p_T \le 12$ GeV/*c*
- R_{AA} seems to increase (=less suppression) at low p_T
 - Current data do not allow a conclusive comparison to other D mesons within uncertainties

Kuznetsova, Rafelski, EPJ C 51 (2007) 113
 He, Fries, Rapp, Phys. Rev. Lett. 110 (2013) 112301

- Comparison with beauty hadrons through their decay into J/ψ (CMS non-prompt J/ψ).
 *p*_T ranges chosen to have similar kinematics for D and B mesons, though with different rapidity ranges.
- Smaller R_{AA} of D mesons w.r.t. B mesons, as expected from mass-dependent energy loss

Mass dependence of R_{AA}

14

- R_{AA} vs. p_T compatible within errors for D, charged particles and π^{\pm} \checkmark possibly a hint of $R_{AA}^{D} > R_{AA}^{\pi}$ for $p_T < 5-6$ GeV/*c*
- Better precision needed to draw conclusions on the expected difference between D and π suppression: $R_{AA}(D) > R_{AA}(\pi)$ from mass hierarchy and colour charge dependence of energy loss
- The different energy loss could be compensated by the softer fragmentation of gluons combined with the increase of the charged hadron $R_{\rm AA}$ towards high transverse momenta

v_2 for D mesons

 Azimuthal anisotropy measured with Event Plane, Scalar Product and 2-Particle Cumulant techniques in 3 different centrality classes.

v_2 for D mesons

- The magnitude of v_2 is similar for charmed hadrons and light-flavour hadrons.
- $v_2 > 0 \rightarrow \sim 5\sigma$ effect for $2 < p_T < 6 \text{ GeV}/c$ (30-50% centrality class, average of the three meson species).
- Results consistent with a strong coupling of c quark with the medium.

Comparison with models: R_{AA} and v_2

- The anisotropy is best described by models that include mechanisms like collisional energy loss and/or hadronization via recombination.
- Challenge: successful models should provide a simultaneous description of D meson R_{AA} and v_2 .

Comparison with models: centrality dependence

- The R_{AA} centrality dependence of heavy and light flavours is compared to calculations by Djordjevic et al.
- The model includes radiative and collisional energy loss
- Fair agreement with data. The higher suppression of D w.r.t. B mesons is due to the mass hierarchy

Heavy-ion LHC and ALICE plans The LHC heavy-ion programme will extend beyond Run 2 to Run 3 and Run 4 High interaction rate: 50 kHz goals of the Expected integrated luminosity: $>10 \text{ nb}^{-1}$ (x100 w.r.t. Run 1) experiments A major detector upgrade has been approved for the LS2 to fully exploit the higher rate and to improve the physics performance Run 2: 1 nb⁻¹ Run 3 + Run 4: high luminosity Pb-Pb Pb-Pb. $>10 \text{ nb}^{-1}$ 2025 2015 2018 2023 2013 2020 2029 **LS 3 LS 1** Run 2 **LS 2** Run 3 Run 4 Run 1: $\sim 0.1 \text{ nb}^{-1}$ LS 2: detector upgrade Pb-Pb 19

ALICE Upgrade: strategy

- ALICE will carry out high precision measurements of rare signals with main focus on the low $p_{\rm T}$ region.
- Boundary conditions and requirements:
 - ✓ very low signal/background ratio for most of the physics signals → no trigger selection possible.
 - ✓ large minimum bias samples required: L_{int} >10 nb⁻¹
 - ✓ High rate: $\mathcal{L} = 6 \times 10^{27} \text{ cm}^{-2} \text{s}^{-1} \Longrightarrow R = 50 \text{ kHz}$
 - ✓ Focus on heavy flavours → improve track resolution and vertexing thanks also to a smaller beam pipe.

new

- ✓ With the upgrade: reconstruction of beauty hadrons.
- ✓ HF baryons will be accessible.

• Strategy:

- ✓ New Inner Tracking System at midrapidity
- \checkmark New Muon Forward Tracker in front of the muon absorber
- New readout chambers for the TPC. Readout upgrades for several detectors and the online systems
- ✓ Integrate Online and Offline (O^2 project) → data reconstruction online

New ITS

- Better pointing resolution by a factor of 3(5) in r\$\$\phi\$\$ (z) at \$p_T\$=500 MeV/c
 - ✓ innermost layer is closer to the IP: from 39 mm → 22 mm
 - ✓ reduced material budget from ~1.14% $X_0 \rightarrow 0.3\% X_0$ for the 3 inner layers (0.8% X_0 for the other 4 layers)
 - ✓ Reduced pixel size: from 50×425 μ m² → ~(30×30 μ m²)
 - ✓ max silicon thickness: 50 μ m
 - ✓ Monolithic Active Pixel Sensors (MAPS) in TowerJazz 0.18 μ m CMOS technology
- Better tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$
 - \checkmark Thanks to the higher granularity
 - \checkmark Thanks to an additional layer: from 6 to 7 layers
- Faster readout: 50 kHz (200 kHz) for Pb-Pb (pp). Now limited to 1 kHz
- Accessible for maintenance during winter shutdowns

New ITS: expected performance

Expected Physics Performance

- ✓ With the upgrade: reconstruction of beauty hadrons.
- ✓ Also HF baryons will be accessible.
- ✓ Beauty signal accessible both at midrapidity and in the muon spectrometer (single muons, displaced J/ψ)
- ✓ D mesons: improved precision down to $p_{\rm T}$ ~0

D and B-meson reconstruction

- D-meson reconstruction with the upgraded detector: $\checkmark D^0 R_{AA}$ down to $p_T = 0$ with higher precision
- B measurement: non-prompt D^0 and J/ψ

25

• Precise measurement of v_2 for prompt (down to $p_T=0$) and displaced D⁰

 $\Lambda_c \to p K^- \pi^+$

Pb-Pb, $\sqrt{s_{NN}} = 5.5 \text{ TeV}$. L_{int} = 10 nb⁻¹, centrality 0-20%

10 12 14 16 18 20 22

 $1.8 \vdash \Lambda_c \rightarrow pK^{-}\pi^+$

1.6

1.4

1.2

0.8

0.6

0.4

0.2

 $\Lambda_{\rm c}$ and $\Lambda_{\rm b}$ reconstruction.

- The upgraded ITS will allow the reconstruction of $\Lambda_{\rm c}$ and $\Lambda_{\rm b}$ baryons
- Baryon/meson enhancement measured in p/ π and $\Lambda/K \rightarrow$ extend measurement to HF (Λ_c/D and Λ_b/B)
- Λ_c full reconstruction down to p_T~2 GeV/c
 Λ_b → Λ_cπ

HF: D_s^+

- Hadronization mechanisms and strangeness enhancement: D_s/D
- D_s^+ : R_{AA} and also azimuthal asymmetry (v_2) with high precision
- v_2 measurement will be possible also for Λ_c baryon

Summary

- Strong suppression of D mesons for p_T >5 GeV/c in central Pb-Pb collisions w.r.t. the binary scaled pp reference in the same range.
- $R_{pPb} \sim 1 \rightarrow$ suppression due to the quark charm energy loss in the QGP.
- Larger suppression of charm than beauty: R_{AA}(D)<R_{AA}(B)
- Comparison with light hadrons not conclusive with present statistics.
- D-meson v_2 (2< p_T <6 GeV/c) compatible with light hadrons \rightarrow strong coupling of charm quarks with the medium.
- Major detector upgrade in LS2 and strong physics programme for Runs 3-4:
 - \checkmark new physics channels: HF baryons and B full reconstruction.
 - ✓ high precision R_{AA} and v_2 measurements down to p_T ~0

Backup

ALICE data samples in Run 1

32

System	Energy √S _{NN} (TeV)	Year	Delivered Integrated luminosity	Main Goal
Pb-Pb	2.76	2010	9 μb ⁻¹	First Pb-Pb data taking at LHC
Pb-Pb	2.76	2011	146 μb ⁻¹	Study hot & dense QCD matter
p-Pb & Pb-p	5.02	2013	15 nb ⁻¹ 17 nb ⁻¹	Study Cold Nuclear Matter effects
pp	0.9	2009-10	0.33 nb ⁻¹	Commissioning
рр	7	2010	0.5 pb ⁻¹	
pp	2.76	2011	46 nb ⁻¹	Reference for
рр	7	2011	4.9 pb ⁻¹	Pb-Pb and p-Pb
рр	8	2012	9.7 pb ⁻¹	