ATLAS physics prospects at the high-luminosity LHC

Philip James Clark University of Edinburgh On behalf of the ATLAS collaboration

Kruger 2014, South Africa 3rd December 2014

- Introduction
- Prospects for Higgs Physics
- Searches for super-symmetric particles
- Dark matter search potential
- Conclusions

Discovered a Higgs boson

• Both ATLAS and CMS have close to 10σ significance

- Minimal Higgs model is very predictive only free parameter is m_h
- Now we will begin the full exploration for the properties of EWSB

Era of precision physics

- SM works extremely well as an effective low energy theory
- We can still discover new Higgs particles, signals in new channels, and precision measurements of properties
- Big questions remaining: flavour, dark matter, hierarchy ...

3rd December 2014

High luminosity LHC

High

ATLAS:

- 300 fb⁻¹ by 2022: new silicon layer (IBL) and trigger upgrades
- 3000 fb⁻¹ by ~2035: new radiation hard tracker (ITk) required

3rd December 2014

ATLAS performance

- Parametrisations for the <u>upgraded</u> ATLAS detector response
 - > Resolution and reconstruction efficiency for e, μ , τ , γ , jets & E_T^{miss}
 - Rates for light and c jets to pass b-tag requirements
 - Parametrisations are checked against full simulations
- Systematic uncertainties
 - Based on completed Run-1 analyses, or if statistical limitation from control regions, then improvements are estimated
- Run-1 style analysis techniques (⇒sensitivity can be improved)

3rd December 2014

Higgs

Sector Sec.

3rd December 2014

C

Phil Clark (University of Edinburgh)

7

Open Higgs questions

• Is it the SM Higgs?

- Interactions?
- Does it give mass to all particles?
- Spin/parity?
- Are there more Higgs-like particles?
 - ➤ Is it part of a MSSM spectrum?
 - Does it couple to dark matter?
- Is it elementary or composite?
- Are there new production/decay channels?

Higgs: where we currently stand

- Need precision measurements of Higgs properties to search for new physics
- Properties measured so far:
 - ➤ m_h= 125 ± 0.37 (stat) ± 0.18 (sys) GeV
 - > Signal strength: $\mu = 1.30 \pm 0.18$
 - Spin-0 nature favoured
 - No significant deviation in couplings
- What next:
 - > Observe all production & decay processes
 - Precision measurements to constrain SM
 - Search for BSM processes
 - CP violation in Higgs sector
 - Are there other Higgs bosons?

3rd December 2014

Phil Clark (University of Edinburgh)

Signal yield (σ/σ_{SM}(m_H=125.36 GeV))

HL-LHC as a Higgs factory

Process at 14 Tev	Higgs bosons at ATLAS with 3000 fb ⁻¹	$\begin{array}{c} 000000 \\ top \\ \hline \\ $
All prod. and decay modes	170 M	000000
VBF (all decays)	13M	q W/Z W/Z 000000 H
tth (all decays)	1.8M	dbar H COCCOCC top
$h \to Z \gamma$	230k	
$h \rightarrow \mu \mu$	37k	$(0,0,0,0) \rightarrow (0,0,0,0) + h - h$
hh	121k	$\frac{1}{10000} + \frac{1}{\overline{h}} - \frac{1}{\overline{h}} - \frac{1}{10000} + \frac{1}{\overline{h}} - \frac$

Higgs production (H→ZZ*→4I)

Using 3000 fb⁻¹ we can measure all the production modes

3rd December 2014

Higgs production $(H \rightarrow \gamma \gamma)$

With 3000 fb⁻¹ we can measure all the production modes

	tīH	WH	ZH	VBF
Significance	8.2	4.2	3.7	3.8

Significance of 8.2 σ for ttH, probing the top-quark Higgs Yukawa coupling

ATL-PHYS-PUB-2014-012

- Decay channel $H \rightarrow bb$ is crucial for coupling measurements
- For both channels combined significance of 8.8(3.9) and error on signal strength of 15(25)% for 3000(300) fb⁻¹

ATL-PHYS-PUB-2014-011

Rare decay modes

H→ Zγ, sensitive to new particles in loops

 H→ µµ, sensitive to couplings with 2nd generation

\mathcal{L} [fb ⁻¹]	300	3000
Signal significance	2.3σ	7.0σ
$\Delta \mu / \mu$	46%	21%

ATL-PHYS-PUB-2013-014

Signficance 3.9(2.3) σ with 3000(300) fb⁻¹

ATL-PHYS-PUB-2014-006

3rd December 2014

Precision Higgs signal strengths

- Signal strength
 μ = σ x BR/(σ x BR)_{SM}
- Accuracy
 - Channels (γγ, ZZ, WW) accurate to 10(5)% for 3000 fb⁻¹ with(out) theory uncertainties
 - Large impact from theory uncertainties (dashed), i.e., QCD scale, jet binning etc
- Separation by production model
 - Vital for coupling measurements

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

ATL-PHYS-PUB-2014-016

Δμ/μ

3rd December 2014

The Higgs couplings

- Precisely predicted in the Standard Model
 - Couplings to fermions proportional to mass
 - Coupling to gauge bosons proportional to mass squared

$$y_{V,i} = \sqrt{\kappa_{V,i} \frac{g_{V,i}}{2v}} = \sqrt{\kappa_{V,i} \frac{m_{V,i}}{v}}$$
$$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}} = \kappa_{F,i} \frac{m_{F,i}}{v}$$

Higgs self-couplings proportional to m_h²

If couplings don't agree with predictions ATL-PHYS-PUB-2014-016
 > would indicate that not all mass comes from a single Higgs boson

3rd December 2014

Coupling measurements

- Introduce coupling modifiers, κ_i
 > SM only , i.e., single narrow state, 0⁺
- Measure ratios to factor out width

 $> \lambda_{ij} = \kappa_i / \kappa_j, \ \kappa_{ij} = \kappa_i \kappa_j / \kappa_{h,j}$ (\kappa_h = width scale factor)

- A generic fit is used
 - Free couplings to SM particles
 - Allow for BSM in loops and undetected final states
 - HL-LHC will improve experimental precision by a factor of 2-3
 - Coupling ratios can be measured at several %-level with 3000 fb⁻¹

0 0.05 0.1 0.15 0.2 0.25

$$\Delta \lambda_{XY} = \Delta(\frac{\kappa_X}{\kappa_Y})$$

ATL-PHYS-PUB-2014-016

Invisible Higgs decays & dark matter

- Two approaches:
 - 1. Direct search: $ZH \rightarrow I^+I^-$ + inv
 - 2. Constraints from couplings
 - WIMP coupling assumed to be free parameter
 - Upper limit derived BR_{inv} from combination of the SM rates
 - Upper BR_{inv} limits translated to WIMP-nucleon scattering crosssections

ATLAS	300 fb ⁻¹	3000 fb ⁻¹
$ZH ightarrow \ell\ell$ +invisible	23-32%	8-16%
Coupling fits	22%	13%

3rd December 2014

Minimal composite Higgs model

- Pseudo-Nambu-Goldstone boson instead of elementary particle > Modified couplings as a function of scaling parameter $\xi = v^2/f^2$
- MCHM 4 (S04)

$$\kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi}$$

$$\kappa_V = \sqrt{1 - \xi}$$

$$\kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}}.$$

MCHM 5 (S05)

ATL-PHYS-PUB-2014-017

Model	3	00 fb ⁻¹	30	000 fb ⁻¹
	All unc.	No theory unc.	All unc.	No theory unc.
MCHM4	620 GeV	810 GeV	710 GeV	980 GeV
MCHM5	780 GeV	950 GeV	1.0 TeV	1.2 TeV

Table 2: Expected 95% CL lower limit on the Higgs boson compositeness scale with 300 and 3000 fb⁻¹ at $\sqrt{s} = 14$ TeV in the MCHM4 and MCHM5 models, each shown with and without the inclusion of theoretical uncertainties in the coupling measurements.

κ_v

ATL-PHYS-PUB-2014-016

2HDM models

- Second Higgs doublet present in many BSM models
- Existence of 5 observable Higgs bosons
 - Two neutral scalar bosons: h and H (both CP-even)
 - One pseudo scalar boson, A (CP-odd)
 - Two charged bosons H[±]
- For tan β > 2, expected limit of m_A > 500 GeV, with 3000 fb⁻¹

ATL-PHYS-PUB-2014-016

3rd December 2014

Flavour changing neutral currents

- t \rightarrow cH can be O(10⁻³) in some 2HDM-III models
- tt \rightarrow (Wb)(Hc) is studied with H \rightarrow $\gamma\gamma$
 - Look for yyj (Hc) peak
 - ➤ Combine with Wb (W→lv / qq)

• Expected UL (95% cL) on BR ~ 1.5x10⁻⁴ (3000fb⁻¹)

CP structure of the Higgs

- Analyse decay angles of $H \rightarrow ZZ$ decay angles using a matrix element observable fit
- CP-odd (CP-even) couplings: g₄ (g₁,g₂)
- Various injected single studies for 3000fb⁻¹

Phil Clark (University of Edinburgh)

 Z_1 θ_1

Di-Higgs production

- Direct measurement of Higgs trilinear self-coupling, λ_{hhh} , requires the study of Higgs boson pair production
- Cross-section at $\sqrt{s} = 14$ TeV is 40.8 fb⁻¹ [NNLO]

HH \rightarrow bbyy: for 3000fb⁻¹ 8.4 signal & ~47 bkg. events (S/ \sqrt{B} ~ 1.3)

- Values: $\lambda/\lambda_{SM} < -1.3 \& \lambda/\lambda_{SM} > 8.7$ can be rejected with 3000 fb⁻¹
- Need to combine with other channels (bbWW, bbtt, bbbb)

3rd December 2014

Unanswered questions beyond Higgs

- Hierarchy between Electroweak and Planck scale
- Why is the recently discovered Higgs boson so light?
- Are there SUSY or vector-like (top) quarks?
- What is the missing dark matter?

- Unification of forces, and are there other forces, do GUTs exist?
- Flavour: why are there three generations of fundamental particles
 - Lepto(n)-quark symmetry?
 - Composite leptons and quarks?
 - Fermion masses and mixing
- Matter-antimatter asymmetry

Running at 14 TeV

Huge increase in discovery reach in multi-TeV region

- HL-LHC with 3000fb⁻¹ at 14 Tev
 - Luminosity increase (x10) to benefit searches for new physics with lower production cross-sections
- What discoveries are possible only at the HL-LHC?

3rd December 2014

Super-symmetry

ity of Edinburgh)

26

Supersymmetry (SUSY) in a nutshell

New spin-based symmetry relating fermions and bosons

- Naturally solves the gauge hierarchy problem
 - Fermion and boson loops contribute with different signs to the Higgs radiative corrections.
- SUSY with R-parity conservation predicts a suitable Dark Matter candidate
 - > R-parity = $(-1)^{3(B-L)+2S}$
 - Lightest SUSY particle (LSP) is stab
- Grand unification of forces
- Predicts an elementary Higgs scalar ...
 - 'intriguing' SM-like limit
 - \rightarrow mass below 135 GeV (in the MSSM)

SUSY widely considered to remain very important amongst BSM proposals - although the most simplistic versions tightly constrained by experimental results!

3rd December 2014

 \rightarrow more than doubles the particle spectrum w.r.t. the Standard Model.

Phil Clark (University of Edinburgh)

Atomic Matte

Light

Current SUSY exclusions

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit		Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{qq}, \overline{q} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{qg}, \overline{g} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{g} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{g} \rightarrow q q \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{g} \rightarrow q q (\ell \ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{g}, \overline{g} \rightarrow q q (\ell \ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{g}, \overline{g} \rightarrow q q (\ell \ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{gg}, \overline{g} \rightarrow q (\ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{gg}, \overline{g} \rightarrow q (\ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{gg}, \overline{gg}, \overline{gg} (\ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{ggg}, \overline{gg}, \overline{gg}, \overline{gg} (\ell \nu \eta) \\ \overline{ggg}, \overline{gg}, \overline{gg} (\ell \ell \nu / \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{gg}, \overline{gg} (\ell \nu \eta) \\ \overline{gg}, \overline{gg}, \overline{gg} (\ell \nu \nu \nu \overline{\chi}_{1}^{0} \\ \overline{gg}, \overline{gg}, \overline{gg} (\ell \nu \eta) \\ \overline{gg}, \overline{gg}, \overline{gg} (\ell \nu \eta) \\ \overline{ggg} (\eta) \\$	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 5.8 10.5	\tilde{q}, \tilde{g} 1.7 TeV \tilde{q}, \tilde{g} 1.2 TeV \tilde{g} 1.2 TeV \tilde{g} 1.1 TeV \tilde{q} 850 GeV \tilde{g} 1.33 TeV \tilde{g} 1.33 TeV \tilde{g} 1.18 TeV \tilde{g} 1.12 TeV \tilde{g} 1.24 TeV \tilde{g} 1.26 TeV \tilde{g} 1.28 TeV \tilde{g} 619 GeV \tilde{g} 600 GeV \tilde{g} 690 GeV \tilde{g} 690 GeV \tilde{g} 645 GeV	$\begin{split} & m(\tilde{q}) \!=\! m(\tilde{g}) \\ & \text{any } m(\tilde{q}) \\ & \text{any } m(\tilde{q}) \\ & m(\tilde{k}_1^0) \!=\! 0 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q}) \!=\! m(2^{nd} \text{ gen.} \tilde{q}) \\ & m(\tilde{k}_1^0) \!=\! 0 \text{ GeV} \\ & m(\tilde{k}_1^0) \!=\! 0 \text{ GeV} \\ & tar(\tilde{k}^0) \!=\! 0 \text{ GeV} \\ & m(\tilde{k}_1^0) \!>\! 50 \text{ GeV} \\ & m(\tilde{k}_1^0) \!>\! 50 \text{ GeV} \\ & m(\tilde{k}_1^0) \!>\! 200 \text{ GeV} \\ & m(\tilde{k}_1^0) \!>\! 200 \text{ GeV} \\ & m(NLSP) \!=\! 200 \text{ GeV} \\ & m(\tilde{G}) \!>\! 10^{-4} \text{ eV} \end{split}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-082 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$ \begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{0}^{0} \\ \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{-1} \end{array} $	0 0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\tilde{s}\$ 1.25 TeV \$\tilde{s}\$ 1.1 TeV \$\tilde{s}\$ 1.34 TeV \$\tilde{s}\$ 1.3 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0})\!<\!400~{\rm GeV} \\ m(\tilde{\chi}_{1}^{0})\!<\!350~{\rm GeV} \\ m(\tilde{\chi}_{1}^{0})\!<\!400~{\rm GeV} \\ m(\tilde{\chi}_{1}^{0})\!<\!400~{\rm GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{k}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} t \tilde{k}_1^{\dagger} \\ & \tilde{r}_1 \tilde{r}_1 (\text{light}), \tilde{r}_1 {\rightarrow} b \tilde{k}_1^{\dagger} \\ & \tilde{r}_1 \tilde{r}_1 (\text{light}), \tilde{r}_1 {\rightarrow} b \tilde{k}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 {\rightarrow} t \tilde{k}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 {\rightarrow} t \tilde{k}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (\text{medium}), \tilde{r}_1 {\rightarrow} t \tilde{k}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (\text{heavy}), \tilde{r}_1 {\rightarrow} t \tilde{k}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (\text{netural GMSB}) \\ & \tilde{r}_2 \tilde{r}_2, \tilde{r}_2 {\rightarrow} \tilde{r}_1 {+} Z \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	Ď1 100-620 GeV Ď1 275-440 GeV Ĩ1 110-167 GeV Ĩ1 130-210 GeV Ĩ1 130-210 GeV Ĩ1 130-210 GeV Ĩ1 215-530 GeV Ĩ1 210-640 GeV Ĩ1 260-640 GeV Ĩ1 90-240 GeV Ĩ2 290-600 GeV	$\begin{split} & m(\tilde{k}_{1}^{0}) < 90 \text{GeV} \\ & m(\tilde{k}_{1}^{1}) = 2 m(\tilde{k}_{1}^{0}) \\ & m(\tilde{k}_{1}^{0}) = 55 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 55 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 1 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 1 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 20 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 0 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 0 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 0 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 50 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) = 50 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) > 150 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) < 250 \text{GeV} \\ & m(\tilde{k}_{1}^{0}) < 200 \text{GeV} \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{c} \tilde{t}_{LR} \tilde{t}_{LR}, \tilde{t} \rightarrow \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \tilde{t} \nu(t \tilde{v}) \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \tilde{\tau} v(\tau \tilde{v}) \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow \tilde{t} \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W \tilde{t}_{1} \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W \tilde{t}_{1} \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W \tilde{t}_{1}^{0} \tilde{t} \tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{0} \tilde{x}_{2}^{0} \\ \tilde{x}_{2}^{0} \tilde{x}_{3}^{0} \rightarrow \tilde{t}_{R} \ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0 \; GeV \\ & m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\mathcal{K}}_{1}^{+}) {+} m(\tilde{\mathcal{K}}_{1}^{0})) \\ & m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\mathcal{K}}_{1}^{+}) {+} m(\tilde{\mathcal{K}}_{1}^{0})) \\ & (\tilde{\mathcal{K}}_{2}^{0}), \; m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0, \; n(\tilde{\mathcal{K}}) {+} m(\tilde{\mathcal{K}}_{1}^{0}) \\ & m(\tilde{\mathcal{K}}_{1}^{1}) {=} m(\tilde{\mathcal{K}}), \; m(\tilde{\mathcal{K}}) {=} 0, \; sleptons \; decoupled \\ & m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0, \; m(\tilde{\mathcal{K}}) {=} 0. \; sleptons \; decoupled \\ & k(\tilde{\mathcal{K}}_{3}^{0}), \; m(\tilde{\mathcal{K}}_{1}^{0}) {=} 0, \; m(\tilde{\mathcal{K}}_{2}^{0}) {+} m(\tilde{\mathcal{K}}_{1}^{0})) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	x̄_1 270 GeV 832 GeV \tilde{s} 832 GeV 832 GeV \tilde{x}_1^0 475 GeV 475 GeV \tilde{q} 1.0 TeV 1.0 TeV	$\begin{split} m(\tilde{\xi}_1^*) - m(\tilde{\xi}_1^0) = &160 \text{ MeV}, \tau(\tilde{\xi}_1^*) = &0.2 \text{ ns} \\ m(\tilde{\xi}_1^0) = &100 \text{ GeV}, 10 \mu \text{s} < \tau(\tilde{g}) < &1000 \text{ s} \\ &10 < \tan \beta < &50 \\ &0 < + \tau(\tilde{\xi}_1^0) < &2 \text{ ns} \\ &1.5 < &c\tau < &156 \text{ mm}, \text{BR}(\mu) = &1, m(\tilde{\xi}_1^0) = &108 \text{ GeV} \end{split}$	ATLAS-CONF-2013-065 1310.6584 ATLAS-CONF-2013-056 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ p \overline{p \rightarrow \tilde{\nu}_{\tau}} + X, \tilde{\nu}_{\tau} \rightarrow e + \mu \\ LFV \ p p \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau \\ \tilde{g} \rightarrow q q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1^- \rightarrow b s \end{array} $	$\begin{array}{c} \hline 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu (\text{SS}) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\text{SS}) \end{array}$	0-3 <i>b</i> - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} \lambda_{111}'=0.10, \ \lambda_{132}=0.05\\ \lambda_{311}'=0.10, \ \lambda_{1(2)33}=0.05\\ m(\vec{q})=m(\vec{q}), \ cr_{LSF}<1 \ mm\\ m(\vec{k}_{1}^{0})>0.2\times m(\vec{k}_{1}^{+}), \ \lambda_{121}\neq 0\\ m(\vec{k}_{1}^{0})>0.2\times m(\vec{k}_{1}^{+}), \ \lambda_{133}\neq 0\\ BR(t)=BR(c)=0\% \end{array}$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 <i>b</i> mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi) < 80 \text{ GeV, limit of} < 687 \text{ GeV for D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = full$	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

Phil Clark (University of Edinburgh)

3rd December 2014

ATLAS Preliminary

 $\sqrt{s} = 7, 8 \text{ TeV}$

 $y_{3} = 1, 0$ 10

SUSY @ the end of Run 1

- Most simplistic version of SUSY under stress
 - > Partially true for 'Natural' SUSY, although depends *e.g.* on level of fine-tuning
- Still, lot of open suitable scenarios. A few examples:
 - ➤ Generic SUSY models explaining higgs mass indicate top squarks up the TeV range → not yet fully covered
 - If there are such 'light' stops, gluinos might be in the 2-3 TeV range \rightarrow not yet reached
 - > Decays of sparticle in most of SUSY models are complex:
 - Limitations on our limits: often valid only if a sparticle decays 100% in one mode
 - High scalar masses (O(10 TeV)) foreseen in several models (e.g. Split SUSY)
 - Focus on EWK sector, where boundaries are less stringent
 - → More on the EWK sector: Low higgsino mass scenarios lead to "compressed" SUSY spectra (low Δ M Next-LSP LSP) → difficult to corner because of low cross sections + low acceptances
 - R-parity violation scenarios not fully covered:
 - Lack of handles such as missing transverse momentum, complex phenomenology, possibly long-lived particles

Production and search strategy

Strong production of gluinos/squarks

- Largest cross-sections: ~ 1fb⁻¹ for masses around 2 TeV
 - \geq 0 lepton + 2 6jets + E_t^{miss}

5σ discovery simplified model	300 fb ⁻¹	3000 fb ⁻¹
Gluino mass	up to 2.0 TeV	up to 2.4 TeV
Squark mass for M(gl) = 4.5 TeV	up to 2.6 TeV	up to 3.1 TeV

ATL-PHYS-PUB-2014-010

Strong production of top squarks

- Naturalness: requires stop mass < ~ 1 TeV
 - Direct production, feasibility studies only for standard cases (t+LSP)
 - > 0/1 lepton + \geq 6/4 jets + \geq 2/1 b-tags + E_T^{miss}

• 5 σ discovery potential up to 1.2 (1.0) TeV with 3000 (300) fb⁻¹

ATL-PHYS-PUB-2013-011

Strong production of bottom squarks

- Third generation quarks need to be light to solve hierachy problem
 - \succ Direct production, feasibility studies only for standard case (b+LSP)

 $\underline{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}$

- \succ 0 lepton + 2 b-tags + E_{T}^{miss}
- \blacktriangleright Uses boost-corrected contransverse mass, m_{CT},

to reduce tt background

 5σ discovery potential up to 1.3 (1.1) TeV with 3000 (300) fb⁻¹

3rd December 2014

Phil Clark (University of Edinburgh)

ATL-PHYS-PUB-2014-010

3rd December 2014

M

Current limits on exotics

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 2014

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	<i>ℓ</i> ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell \ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD QBH } \\ \text{ADD BH high } \sum p_T \\ \text{RS1 } G_{KK} \to \ell \ell \\ \text{RS1 } G_{KK} \to WW \to \ell \nu \ell \nu \\ \text{Bulk } \text{RS } G_{KK} \to WW \to \ell \nu \ell \nu \\ \text{Bulk } \text{RS } G_{KK} \to HH \to b\bar{b}b\bar{b} \\ \text{Bulk } \text{RS } g_{KK} \to t\bar{t} \\ S^1/Z_2 \text{ ED} \\ \text{UED} \end{array}$	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu \\ 2 \gamma \end{array}$	$\begin{array}{c} 1-2 j \\ - \\ 1 j \\ 2 j \\ - \\ \geq 2 j \\ - \\ 2 j / 1 J \\ 4 b \\ \geq 1 b, \geq 1 J \\ - \\ - \\ - \end{array}$	Yes Yes Yes Yes	4.7 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 19.5 14.3 5.0 4.8	Mo 4.37 TeV Ms 5.2 TeV Min 6.2 TeV Min 6.2 TeV GKK mass 2.68 TeV GKK mass 1.23 TeV GKK mass 590-710 GeV BKK mass 590-710 GeV BKK mass 2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ} \\ n=6 \\ n=6 \\ m=6, \; M_D=1.5 \; \text{TeV}, \; \text{non-rot BH} \\ n=6, \; M_D=1.5 \; \text{TeV}, \; \text{non-rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ BR=0.925 \end{array}$	1210.4491 ATLAS-CONF-2014-030 1311.2006 to be submitted to PRD 1308.4075 1405.4254 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-039 ATLAS-CONF-2014-039 ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{EGM} W' \to WZ \to \ell\nu \ell'\ell' \\ \operatorname{EGM} W' \to WZ \to qq\ell\ell \\ \operatorname{LRSM} W'_R \to t\overline{b} \\ \operatorname{LRSM} W'_R \to t\overline{b} \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ 1 e, μ 0 e, μ	_ _ _ 2 j / 1 J 2 b, 0-1 j ≥ 1 b, 1 .	- Yes Yes - Yes J -	20.3 19.5 20.3 20.3 20.3 14.3 20.3	Z' mass 2.9 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.59 TeV W' mass 1.59 TeV W' mass 1.77 TeV		1405.4123 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
CI	Cl qqqq Cl qqℓℓ Cl uutt	 2 e,μ 2 e,μ (SS)	2 j _) ≥ 1 b, ≥ 1	– – j Yes	4.8 20.3 14.3	Λ 7.6 TeV Λ Λ 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ C = 1	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
MD	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-147 1309.4017
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	$\ge 2 j$ $\ge 2 j$ 1 b, 1 j		1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Zt + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e, μ 1 e, μ 2/≥3 e, μ 2/≥3 e, μ 2 e, μ (SS)	$\geq 2 \text{ b}, \geq 4$ $\geq 1 \text{ b}, \geq 3$ $\geq 2/\geq 1 \text{ b}$ $\geq 2/\geq 1 \text{ b}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 1$	j Yes j Yes – – j Yes	14.3 14.3 20.3 20.3 14.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV B mass 755 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or –	– – IjYes –	20.3 20.3 4.7 13.0	q* mass 3.5 TeV q* mass 4,09 TeV b* mass 870 GeV /* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 to be submitted to PRD 1301.1583 1308.1364
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma 2 e, \mu 2 e, \mu 2 e, \mu (SS) - - - \sqrt{s} = $	2 j - - - - - - -	Yes 	20.3 2.1 5.8 4.7 4.4 2.0 8 TeV	ar mass 960 GeV № mass 1.5 TeV № mass 245 GeV № mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV 10 ⁻¹ 1	$\begin{array}{c} m(W_{R}) = 2 \text{ TeV}, \text{ no mixing} \\ V_{e} =0.055, V_{\mu} =0.063, V_{r} =0 \\ \text{DV production, } \text{BR}(H^{\pm\pm} \rightarrow \ell\ell)=1 \\ \text{DV production, } g = 4e \\ \text{DV production, } g = 1_{g_{D}} \\ $	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411

*Only a selection of the available mass limits on new states or phenomena is shown.

3rd December 2014

ATLAS Preliminary

Dark matter

Models

Effective field theory

(contact interaction between SM and DM particles)

- Simplified models with explicit mediator
- Signatures ("mono-X")
 - Initial state radiation
 - → High-p_T leading jet (≤ 2 jets), large E_t^{miss} , e/µ veto

Prospects

 \succ 5σ discovery up to M^{*} = 2.6(2.2) TeV for 3000(300) fb⁻¹

ATL-PHYS-PUB-2014-007

DM

DMDM

DM

3rd December 2014

Dilepton resonances

Many theories beyond the SM predict new resonances

- Heavy gauge bosons W' and Z'
- Kaluza-Klein excitations of vector bosons

Signatures are very clean

Phil Clark (University of Edinburgh)

ATL-PHYS-PUB-2014-010

Conclusions

- The HL-LHC is necessary to perform precision measurements on the recently discovered Higgs boson
- HL-LHC extends the discovery reach in theoretically motivated areas
- Wide range of signatures and models explored
 - But this only a small fraction of the full ATLAS physics program!!!

 The HL-LHC could answer fundamental questions regarding EWSB and dark matter