

Standard Model Higgs Combination and Higgs Properties Measurements in ATLAS

SM Higgs @ the LHC

SM Higgs @ the LHC

SM Higgs @ the LHC

Discovery!

Discovery!

Discovery!

Timeline

Mass & Width

Mass Measurement in $H \rightarrow \gamma \gamma$

arXiv:1406.3827

2

3

 Δ_{i} [GeV]

Mass Measurement in $H \rightarrow ZZ \rightarrow 4\ell$

arXiv:1406.3827

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Excellent mass resolution in the 4^l channel

Multivariate regression used for electron energy calibration

Gaussian Sum Filter for brehmstrahlung energy losses

A kinematic fit is used for the lepton pair closest to the Z mass

Kyle Cranmer (NYU)

Mass Measurement in $H \rightarrow ZZ \rightarrow 4\ell$

arXiv:1406.3827

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Baseline is a 2d mass fit (m4l x 4 BDT bins)

The BDT is used for ZZ separation, and includes a matrix-element (MELA) discriminant as input

arXiv:1406.3827

The combined mass measurement is

 $m_H = 125.36 \pm 0.37 \,(\text{stat}) \pm 0.18 \,(\text{syst}) \,\text{GeV}$

The discrepancy between the two measurements has reduced to ${\sim}2\sigma$

 $\Delta m_H = 1.47 \pm 0.67 \,(\text{stat}) \pm 0.28 \,(\text{syst}) \,\text{GeV}$

off-shell effects sensitive to width

F. Caola and K. Melnikov, [arXiv:1307.4935] See also: N. Kauer, G. Passarino, Campbell et al

 $\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{\Gamma_{\rm rr}}, \quad \sigma_{\rm gg \to H \to ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2.$

The width of the Standard Model

Higgs is 4.15 MeV << O(GeV) resolution

→ ambiguity as Rate \propto Br = Γ/Γ_{SM}

Kyle Cranmer (NYU)

Spin & CP Properties

Kyle Cranmer (NYU)

Kruger, Dec 2014

Exactly 1 year after the discovery

Standard Model quantum numbers are favored, focus now on CPviolating admixtures

Cross-sections and Branching Ratios (assuming 0⁺ SM tensor structure)

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson	Subsequent	Sub-Channels		Ref.
Decay	Decay			
		2011 $\sqrt{s} = 7 \text{ TeV}$		
$H \rightarrow ZZ^{(*)}$	4ℓ	4 ℓ {4 <i>e</i> , 2 <i>e</i> 2 μ , 2 μ 2 <i>e</i> , 4 μ , 2-jet VBF, ℓ -tag}		
$H \rightarrow \gamma \gamma$	_	10 categories	4.8	[7]
		${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}}$		[,]
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	4.6	[9]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
II	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]
$\Pi \rightarrow \mathcal{U}$	$ au_{ ext{had}} au_{ ext{had}}$	{1-jet, 2-jet}	4.6	
$VH \rightarrow Vbb$	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
	$W \to \ell \nu$	$p_{\rm T}^{\hat{W}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	
		2012 $\sqrt{s} = 8 \text{ TeV}$		
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\}$	20.7	[8]
		14 categories	20.7	[7]
$\mu \to \gamma \gamma$	_	${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag}, E_{\text{T}}^{\text{miss}}\text{-tag}, 2\text{-jet VH}$	}	[/]
$H \rightarrow WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]
$H \to \tau \tau$	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13	
	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[10]
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\hat{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

Kyle Cranmer (NYU)

Kruger, Dec 2014

Details

Channels are sub-divided to enhance sensitivity either for experimental reasons or take advantage of production features

Higgs Boson	Subsequent	Sub-Channels		Ref
Decay	Decay			
2011 $\sqrt{s} = 7 \text{ TeV}$				
$H \rightarrow ZZ^{(*)}$	4ℓ	{4 <i>e</i> , 2 <i>e</i> 2µ, 2µ2 <i>e</i> , 4µ, <mark>2-jet VBF, ℓ-tag</mark> }	4.6	[8]
$H \rightarrow \gamma \gamma$	_	10 categories	4 8	[7]
		$\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$		[']
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet, }1\text{-jet, }2\text{-jet VBF}\}$	4.6	[9]
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e,\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\bar{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	
		2012 $\sqrt{s} = 8 \text{ TeV}$		
II = 77(*)	1.0		20.7	101

$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-jet VBF, \ell-tag\}\}$	20.7	[8]
$H \rightarrow \gamma \gamma \gamma$	14 categories		20.7	[7]
$\Pi \rightarrow \gamma \gamma$	_	$\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{T}^{\text{miss}}\text{-tag}, 2\text{-jet VH}\}$	20.7	[/]
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} VBF\}$	20.7	[9]
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet, } 1\text{-jet, } p_{\mathrm{T},\tau\tau} > 100 \text{ GeV, } 2\text{-jet}\}$	13	[10]
$\Pi \rightarrow \iota \iota$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]
	$Z \to \ell \ell$	$p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

Kyle Cranmer (NYU)

The signal strength

Many Higgs results presented in terms of a signal strength μ

sloppy shorthand causes confusion

$$\mu \neq \frac{\sigma}{\sigma_{SM}}$$

$$\mu \neq \frac{\sigma \cdot BR}{\sigma_{SM} \cdot BR_{SM}}$$

$$\mu \approx \frac{\sum_{i} \sigma_{i} \cdot BR \cdot \epsilon_{i} \cdot A_{i}}{\sum_{i} \sigma_{i,SM} \cdot BR_{SM} \cdot \epsilon_{i} \cdot A_{i}}$$

$$\mu_i = \frac{\sigma_i}{\sigma_{i,SM}}$$

Disentangling multiple production modes

∎ggF VBF ttH WH **7**H **ATLAS** Preliminary (simulation) $H \rightarrow \gamma \gamma$ Inclusive Unconv. central low p_{Tt} ATLAS Preliminary Unconv. central high p $_{_{Tt}}$ Unconv. rest low $p_{Tt}^{''}$ Data 2012, √s = 8 TeV Unconv. rest high p_{Tt} $Ldt = 20.7 \text{ fb}^{-1}$ Conv. central low p Conv. central high $p_{Tt}^{\cdot \cdot}$ Conv. rest low p_{Tt} $H \rightarrow \gamma \gamma$ Conv. rest high $p_{T_t}^{\cdot \cdot}$ m_H = 126.8 GeV Conv. transition Loose high-mass two-jet Tight high-mass two-jet Low-mass two-jet E_{τ}^{miss} significance One-lepton 100 -2 10 20 30 50 60 70 80 90 0 40 0 2 8 10 6 4 signal composition (%) Signal strength

$$n_{\text{Signal}}^{k} = \left(\sum \mu_{i} \sigma_{i,SM} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \mathcal{B}_{f,SM} \times \mathcal{L}^{k}$$

- $\sigma_i = \mu_i \sigma_{i,SM}$ is the i^{th} hypothesized production cross section
- $\mathcal{B}_f = \mu_f \mathcal{B}_{f,SM}$ is the f^{th} hypothesized branching fraction
- Detector acceptance A_{if}^k , reconstruction efficiency ε_{if}^k , and integrated luminosity \mathcal{L}^k are fixed by above assumptions

Model-independent presentation

Cite as: ATLAS Collaboration (2013) HepData, http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44

Model-independent presentation

ATLAS Collaboration (Aad, Georges (Freiburg U.) [...]) Show all 2923 authors

Cite as: ATLAS Collaboration (2013) HepData, http://doi.org/10.7484/INSPIREHEP.DATA.A78C.HK44

Model-independent presentation

Can't compare contours directly, b/c there is a different BR for axis

But, BR cancels when considering slope in this plane

• mild sensitivity to theory uncertainties (jet veto, ggH+2jet contamination,...)

Kyle Cranmer (NYU)

VBF 2-photon candidate

dit Toolbar

 $m_{\gamma\gamma} = 126.9 \text{ GeV}$ $\Delta \eta_{jj} = 5.6$ $m_{jj} = 1.67 \text{ TeV}$

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

VBF H→ 4I candidate

Ratio of Branching Ratios

A model independent approach less sensitive to theory uncertainties

Kyle Cranmer (NYU)

Updated $H \rightarrow \gamma \gamma$

New categories, improved calibration Overall signal strength came down from 1.5 ± 0.3 to $\mu = 1.17 \pm 0.27$

Here we see the results on the signal strength for each production mode.

Based on the 5-D version of top plot.

Updated $H \rightarrow ZZ \rightarrow 4\ell$

arXiv:1408.5191

New BDT-based VBF enriched categories

Added VH hadronic, and VH leptonic categories

	ggF	VBF	VH	BKG	Obs
ggF-tag	13	0.6	0.3	10	34
VBF-tag	1.6	1.4	0.1	0.6	4
VH-tag	0.4	0.03	0.2	0.4	0

Kyle Cranmer (NYU)

25

ggF, VBF, bbH, tt

····· VBF purity

0.4

0.2

Updated H \rightarrow **WW** \rightarrow **\ellv\ellv**

Improvements in signal acceptance, background determination and rejection, and the signal yield extraction.

Increase the expected significance from 3.7 to 5.8σ and they reduce expected uncertainty on μ by 30%.

Enormous effort, beautiful plot

Kyle Cranmer (NYU)

Kyle Cranmer (NYU)

Kruger, Dec 2014

Couplings

The basic starting point for the various parametrizations :

$$\sigma(H) \times BR(H \to xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma}$$

No useful direct constraint on total width at LHC (but getting close)

- ideally, allow for invisible or undetected partial widths
- leads to an ambiguity unless something breaks degeneracy

Various strategies / assumptions break this degeneracy

- Assume no invisible decays
- Fix some coupling to SM rate
- Only measure ratios of couplings
- + Limit $\Gamma_V \leq \Gamma_V^{\mathrm{SM}}$ eg. Dührssen et. al, Peskin, ...
 - valid for CP-conserving H, no H⁺⁺, ... Gunion, Haber, Wudka (1991)
 - together with $\Gamma_V^2/\Gamma = \text{meas} \Rightarrow \Gamma_{\text{vis}} \leq \Gamma \leq \Gamma_{V,SM}^2/\text{meas}$

Parametrizing the couplings

Approach: scale couplings w.r.t. SM values by factor κ or ratio λ

Expansion around SM point with state-of-the-art predictions

Option 1) relate ggH and $\gamma\gamma$ H assuming no new particles in loop

Option 2) introduce κ_g and κ_γ as effective coupling to ggH and $\gamma\gamma$ H

Benchmark models

Fully model independent fit is not very informative with current data

Benchmarks proposed by joint theory/experiment LHC XS group arXiv:1209.0040

Probe Fermionic vs. Bosonic couplings:

Probe W vs. Z couplings (custodial symmetry)

Probe up. vs. down fermion couplings

Probe quark vs. lepton couplings

Probe new particles in ggH and γγH loops

Probe invisible decays

Example Coupling results

Phys. Lett. B 726 (2013)

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Here, evidence for fermion couplings is indirect

ETmiss=102 GeV, m_{jj} =1.04 TeV and $m_{\tau\tau}$ =127 GeV

Example Coupling results

Spring 2014: Updated results with preliminary fermionic channels

Constraints from direct fermionic coupling

50

ATLAS-CONF-2014-061

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Vτ

MCKypes Craringer Provide selected events in the Boosted and VBF Kategerie Det Ch2014

 $H \rightarrow \mu \mu$

Higgs branching ratios to fermions proportional to mass² Unlike the universal coupling of $Z \rightarrow ee$, $\mu\mu$, $\tau\tau$ SM branching ratio for the H \rightarrow µµ decay is 21.9 × 10⁻⁵ Limit is <7x SM rate, universal coupling with τ is very excluded!

Kyle Cranmer (NYU)

Conclusions

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Keep an eye out for final combined coupling measurements! ~

Backup

Summary of what we have established

Mass, spin, CP, and flavor

- mH ~125.5 ± 0.5 GeV
- looks like 0⁺ as in SM, though only marginally favored over some alternatives
- fraction of CP odd coupling in ZZ is < \sim 50%
- no FCNC seen, BR(t \rightarrow Hc) $\lesssim 1\%$

Production:

- discovery established ggF production & now VBF production also firmly established
- + evidence for VH ~2 σ
- ttH: not yet, look out for Run-II

Decays:

- $\gamma\gamma$, WW, ZZ >> 5σ
- $\tau\tau$ at ~4 σ (lack of $\mu\mu$ as expected \Rightarrow not a flavor-universal coupling)
- bb~2σ
- BR(H \rightarrow invisible/undetected) < ~60%
- total width < ~4.2x SM
- Overall coupling pattern:
 - consistent with the SM, though $\sim 2\sigma$ tension seen

Kyle Cranmer (NYU)

Kruger, Dec 2014

41

- ATLAS Public Higgs Results
 - Mass Paper Phys. Rev. D. 90, 052004 (2014)
 - H→γγ arxiv:1408.7084
 - $-H \rightarrow ZZ^* \rightarrow 4I \qquad arxiv: 1408.5191$
 - $H \rightarrow WW^* \rightarrow I \nu I \nu \quad \text{ATLAS-CONF-2014-060}$
 - $H \rightarrow \tau \tau$ ATLAS-CONF-2014-061
 - H→bb arxiv:1409.6212
- All results using full Run 1 dataset
 - ~5 fb⁻¹ @ √s = 7 TeV + ~20 fb⁻¹ @ √s = 8 TeV

FCNC $t \rightarrow cH, H \rightarrow \gamma \gamma$

