International workshop on "Discovery physics at the LHC", Kruger, South Africa

Low mass dilepton measurements with ALICE at the LHC

Hongyan Yang for the ALICE Collaboration

1-6 December, 2014

Dileptons in heavy ion collisions

- Penetrating probe of the strongly interacting hot and dense medium with small or negligible final state effects
- $\square \rho$ broadening per in-medium modification \rightarrow probes chiral aspects of phase transition
- thermal photon radiation via low and intermediate mass dileptons

 \rightarrow sensitive to the temperature history of the medium

 $\Box \omega, \phi$ etc production

Dileptons within different mass ranges

- \Box Low mass $M < 1.1 \text{ GeV}/c^2$
 - \rightarrow conversions, neutral meson (Dalitz) decay
 - \rightarrow direct photons
- □ Intermediate mass $1.1 < M < 3 \text{ GeV}/c^2$
 - \rightarrow heavy flavour ($D\overline{D}$) semi-leptonic decay
 - \rightarrow QGP thermal radiation
- \Box High mass $M > 3 \text{ GeV}/c^2$
 - \rightarrow heavy flavour ($B\overline{B}$) and quarkonium (J/ ψ and ψ')

 \rightarrow Drell-Yan process

Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014 ALICE©

A dielectron continuum sketch

Further on motivations: from RHIC to LHC energy

□ Measurements in Au-Au collisions at 200 GeV at RHIC

 \Box Large direct photon flow (v_2, v_3) & relative small slope [R. Rapp, H.van Hees, M. He, arXiv:1408.0612]

0.1

0.05

n

- \Box virtual photon with internal conversion to $l^+l^ \rightarrow$ different uncertainty vs conversion approach
- higher photon yield (smaller photon elliptic flow?) \rightarrow crucial for confirmation of early or late equilibration

5

3

2

qT (GeV)

Thermal photon radiation in heavy ion collisions at the LHC

- □ Thermal radiation from hadron gas and QGP vs c.m.s energy and centrality → accessible with low & intermediate mass dileptons in ALICE
 - **Spectrum**: \rightarrow temperature *T*
 - **Given Scheme S**
 - \rightarrow Advantages of ALICE: low p_{T} lepton tracking and PID (mid-rapidity: *e*, forward: μ)
 - □ mid-rapidity via electrons: large combinatorics from background electrons
 - \rightarrow not possible with any trigger strategy: abundant low momentum electrons
 - \rightarrow electron from various sources:
 - photon conversions in materials and various hadronic sources
 - \rightarrow large uncertainties in charm and beauty cross sections measurement
 - □ forward rapidity via dimuons: large contamination of low momentum muons → with current muon tracking and triggering
 - large combinatorial background in low mass dimuon
 - not accessible with the current muon arm

\square Spectrum and flow via external photon conversions method (PCM) in ALICE \rightarrow see talk by K. Reygers

Dielectrons with ALICE central barrel

Inner Tracking System, Time Projection Chamber and Time Of Flight

Electron identification with ITS, TPC and TOF

□ Inner Tracking System

Time Of Flight

Time Projection Chamber

□ Electron selection in pp, p-Pb & Pb-Pb

Syst.	ITS	ТРС	TOF	h-contam.
рр	no	e incl.	h rej.	< 1%
p-Pb	e incl.	e incl.	h rej.	< 10%
Pb-Pb	e incl.	e incl.	h rej.	< 10%

- \Box TOF is efficient from p > 0.3 GeV/c
 - \rightarrow using ITS for electron PID complementarily
- \Box ITS, TPC: $p_{\rm T} > 0.2~{\rm GeV}/c;$ TOF: $p_{\rm T} > 0.4~{\rm GeV}/c$

[ALICE Collaboration, arXiv:1402.4476]

ALICE 🕲 | Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

ALICE central barrel: dielectron measurement

□ Signal extraction: like sign, unlike sign and event-mixing approach

R-factor (acceptance correction factor in event mixing)	$N_{+-}^{\mathrm{ME}}/\sqrt{N_{++}^{\mathrm{ME}}N_{}^{\mathrm{ME}}}$
Background $N^{ m bkg}$ (like sign and event mixing)	$R \cdot 2\sqrt{N_{++}^{\text{SE}}N_{}^{\text{SE}}}$
Signal $N^{ m sig}$ (unlike sign)	$N^{ m SE}_{+-} - N^{ m bkg}$

□ Background subtracted signal contains all correlated dielectron pairs

(to be corrected by detector effects)

- remaining photon conversions (small after strict track selection)
- $\hfill\square$ neutral meson (Dalitz) decays $\pi^0,\eta,\eta',\rho,\omega,\phi$
- \Box correlated $c\bar{c}$, $b\bar{b}$ decays to dielectrons: D, B mesons & quarkonium
- virtual direct photons, Drell-Yan process

□ Thermal photon extraction:

- □ efficiency corrected signal distribution, compared with a hadronic cocktail → need input for cocktail generation: π^0 (η , ϕ , J/ ψ etc), $c\bar{c}$, $b\bar{b}$ cross-sections
 - \rightarrow looking for excess at low mass region (only done in pp so far)

Dielectrons in pp collisions at $\sqrt{s} = 7$ TeV vs hadronic cocktail

\square $p_{\rm T}$ integrated dielectron mass continuum consistent with cocktail estimation

Cocktail calculations

 \rightarrow using parameterisation of π^0 , η , ϕ , J/ ψ from ALICE measurements; (η' , ω , ρ from $m_{\rm T}$ scaling);

- \rightarrow $c\bar{c}$ input: cross section = 8.5 mb (PYTHIA)
- Large systematic uncertainties
 - \rightarrow from input spectra

 $\hfill \ensuremath{\square}\ensuremath{\gamma^*}\xspace$ production: Kroll-Wada equation

$$\frac{1}{N_{\gamma}}\frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi}\sqrt{1 - \frac{4m_e^2}{m_{ee}^2}\left(1 + \frac{2m_e^2}{m_{ee}^2}\right)\frac{1}{m_{ee}}}$$

ALI-PREL-69064

Fit function:

$$f_{total} = (1 - r) \cdot f_{cocktail} + r \cdot f_{\gamma, direct}$$

(fit parameter $r \propto$ ratio of direct over inclusive photons)

Direct photon extraction

Dielectron invariant mass continuum signal/background ratio

mass continuum vs cocktail

ALICE Collaboration | 1-6 December, 2014 LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

Transverse momentum spectra within various m_{ee} intervals: $p_{T}^{e,min} = 0.2 \text{ GeV}/c$

Cocktall sum with uncertail

ICE Prelimina

ŝ

Ph NSD 10 = 5.02 Te

 $m_{ee} < 0.14 \text{ GeV}/c^2$ $0.14 < m_{ee} < 0.75 \text{ GeV}/c^2$ $0.75 < m_{ee} < 1.1 \text{ GeV}/c^2$ $1.1 < m_{ee} < 3.1 \text{ GeV}/c^2$

Compared with hadronic cocktails

\rightarrow consistency within uncertainties seen in all mass ranges

Low mass dielectrons in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV

□ 0-10% central collisions: $0.4 < p_{\rm T}^{e} < 3.5 \text{ GeV}/c \& 1.0 < p_{\rm T}^{ee} < 2.0 \text{ GeV}/c$

Limitations in current uncorrected measurements

- \square Low dielectron pair efficiency: \sim 10-20% level
- \square Small S/B ratio: $\sim 10^{-3}$ 10^{-2} and limited significance
- □ For signal extraction: large uncertainties from hadronic cocktail calculations

Ideas for improvement

ALICE[©]

- □ balance between electron purity in e-ID and detector inefficiency
- reduction of combinatorial background: photon conversion rejection
- \Box interplay between S/B ratio and significance

D precise measurements for input to cocktail calculation: precise description of background Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014 Low mass dielectrons in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV

20-50% semi-central collisions: $0.4 < p_{\rm T}^{e} < 3.5$ GeV/c & $1.0 < p_{\rm T}^{ee} < 2.0$ GeV/c

Limitations in current uncorrected measurements

- \square Low dielectron pair efficiency: \sim 10-20% level
- \square Small S/B ratio: $\sim 10^{-3}$ 10^{-2} and limited significance
- □ For signal extraction: large uncertainties from hadronic cocktail calculations

Ideas for improvement

ALICE[©]

- □ balance between electron purity in e-ID and detector inefficiency
- reduction of combinatorial background: photon conversion rejection
- \Box interplay between S/B ratio and significance

Deprecise measurements for input to cocktail calculation: precise description of background Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

Dielectrons flow in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV

□ System evolution history: early or late thermalisation?

$$E\frac{d^{3}N}{dp} = \frac{1}{2\pi}\frac{d^{2}N}{p_{\mathrm{T}}dp_{\mathrm{T}}dy}\left[1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n\Delta\varphi)\right]$$

R. Chatterjee et. al., PRL **96**, 202302 (2006) PRC **79**, 021901 (2009)

(formation time τ_0 of the QGP)

□ Status of ALICE measurement

- Possible for dielectron flow study
 - \rightarrow low momentum electron ID
 - \rightarrow event plane: VZERO (large η gap)
- $\hfill\square$ Non-trivial with small S/B ratio

□ 0-10% central collisions

\Box Small *S/B* ratio leads to huge uncertainties in background extracted dielectron v_2

 $\mathsf{ALICE}^{\textcircled{C}} \mid \mathsf{Low} \text{ mass dilepton measurements with ALICE at the LHC} \mid \mathsf{Hongyan Yang for the ALICE Collaboration} \mid 1\text{-}6 \text{ December, 2014}$

Dielectrons flow in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV

□ System evolution history: early or late thermalisation?

$$E\frac{d^{3}N}{dp} = \frac{1}{2\pi}\frac{d^{2}N}{p_{\mathrm{T}}dp_{\mathrm{T}}dy}\left[1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n\Delta\varphi)\right]$$

R. Chatterjee et. al., PRL **96**, 202302 (2006) PRC **79**, 021901 (2009)

(formation time τ_0 of the QGP)

□ Status of ALICE measurement

- Possible for dielectron flow study
 - \rightarrow low momentum electron ID
 - \rightarrow event plane: VZERO (large η gap)
- \Box Non-trivial with small S/B ratio

20-50% semi-central collisions

\Box Small *S*/*B* ratio leads to huge uncertainties in background extracted dielectron v_2

ALICE Collaboration | 1-6 December, 2014

Dimuons with ALICE muon arm

Muon Tracking Chambers and Muon Trigger

Low mass dimuons in pp collisions at $\sqrt{s} = 7$ TeV

□ Low mass dimuon spectrum: good agreement between signal and MC sources

 \Box ω and ϕ are accessible in pp at 2.76 and 7 TeV (baseline for p-Pb and Pb-Pb)

Dimuons in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ **TeV**

Asymmetric systems: p-Pb and Pb-p collisions

- □ Hadronic cocktail fits
- \rightarrow Fair agreement: data vs hadronic cocktail
- \rightarrow Systematical uncertainties on signal extraction: 7%
- ϕ production at forward / backward rapidity

ALICE[©] Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

Low mass dimuons in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV

Invariant mass continuum vs hadronic cocktail fits

□ Extraction of vector mesons possible

 \Box $p_{\mathrm{T}}^{\mu\mu} \geq$ 2 GeV/c

□ Large statistical uncertainties: not allowing precise measurement of the underlying continuum

 \square statistical uncertainty \sim 10 - 40%

□ Thermal photon radiation: not possible

ALICE Collaboration | 1-6 December, 2014 Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

Future measurements with ALICE

RUN2 after ALICE readout upgrade | RUN3 after ALICE major upgrade

With RUN2: higher statistics and better detector performance

Gamma Sources of improvements expected

- $\hfill \Box$ Higher \sqrt{s} with higher luminosity and data rate
 - \rightarrow faster TPC: higher data taking rate (upgraded electronics)
- □ Rare trigger under consideration
 - \rightarrow High multiplicity trigger
 - \rightarrow TRD and EMCAL trigger
 - $\hfill\square$ constrain better the contribution from heavy flavour electrons
- Detector completion
 - \rightarrow SPD (ITS first 2 layers) recovery from failed cooling in RUN1
 - □ larger acceptance for electron tracking & identification
 - □ better conversion rejection probability
 - \rightarrow Completed installation of TRD
 - □ larger acceptance in electron tracking and identification
 - $\hfill\square$ improves TPC-TOF matching \rightarrow reduces hadron contamination

\Rightarrow measurements of S, S/B and significance with smaller uncertainties expected

With RUN3 after major upgrades- after 2019

□ Precise measurements of low mass lepton pairs emitted from the QGP

muon arm: MFT + MUON

ALICE major upgrade for RUN3

- □ ITS: high impact parameter resolution
- GEM-TPC: better electron tracking and data taking rate
- MFT: displaced muons, removal of background muons

With upgraded ITS

- $\hfill\square$ tracking based conversion rejection possible \rightarrow via topology cut
- □ better impact parameter (DCA) resolution
 - ightarrow separation of heavy flavour electrons and prompt signals
 - \rightarrow $\times 2$ gain in rejection of electrons from beauty-decay
- lacksquare lower material budget \rightarrow higher tracking efficiency at low p_{T}

[ITS upgrade Letter of Intent (LoI) and Technical Design Report (TDR) JPG 41 (2014) 087002]

With upgraded ITS: much better S/B and significance

Comparison current ITS & new ITS: Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.5$ TeV

ALICE simulation Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV: comparison

vst. err. cc + cocktai

1 1.2 1.4

Mee (GeV/c²)

□ Current ITS, current rate loose DCA cut (not possible)

tight DCA cut (improvement marginal)

□ New ITS, tight DCA cut current rate (reduced syst., stat. limited)

new rate (excess accessible!)

[ALICE upgrade LOI: CERN-LHCC-2012-012]

 \Box Quantitative access to the excess \rightarrow with new ITS + high rate + tight DCA cut

ALICE[©] | Low mass dilepton measurements with ALICE at the LHC | Hongyan Yang for the ALICE Collaboration | 1-6 December, 2014

ALICE simulation: $p_{\rm T}$ spectrum in Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.5$ TeV

□ Dielectron excess with tight DCA cut

□ With new ITS and new rate

- much smaller stat. and syst. uncertainties
 - \rightarrow dielectron excess accessible in low and intermediate mass

ALICE simulation: T and v_2 extraction in Pb-Pb at 5.5 TeV

ALICE simulation: with upgraded ITS + TPC

Comparison with current TPC rate vs new TPC rate with new ITS

Comparison of Poisson-sampled spectrum to expected hadronic and medium-induced sources

With upgraded muon arm: Muon Forward Tracker (MFT)

With MFT

- □ precisely measure the displacement of muons
 - \rightarrow reduces muons from charm and beauty semi-muonic decays
- precise measurement of dimuon opening angles
 - \rightarrow precise determination of 2-body decays of light resonances
- Detter rejection of background muon contributions to the comb. background
- better mass resolution: matching between MUON tracks and MFT clusters

\Rightarrow expect enhancement of S/B ratio without losing significance

Low mass dimuons w/o and with MFT

ALICE

\Box expected low mass dimuon spectrum, Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.5$ TeV

after comb. background subtraction and normalised to $L_{int} = 10 \ nb^{-1}$

Low mass dimuons w/o MFT

Device Pb-Pb at 5.5 TeV (MC) vs Pb-Pb at 2.76 TeV (data)

raw signal

signal / background ratio

[MFT upgrade Lol]

- \square same minimum dimuon momentum: $p_{\rm T}^{\mu\mu}>2~{\rm GeV}/c$
- MC and data: after comb. background subtraction
- □ MC: Pb-Pb at 5.5 TeV, normalised to $L_{int} = 10 \ nb^{-1}$
- data: LHC11h Pb-Pb at 2.76 TeV

\Box Much improved stat. + syst. uncertainties and improved *S*/*B* ratio

Low mass dimuons w/o and with MFT

D Mass continuum excess in 0-10% central Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.5$ TeV

Summary

□ ALICE with existing data

- □ results from pp and p-Pb collisions: in agreement with hadronic cocktail
 - \rightarrow large uncertainties does not allow conclusion \rightarrow lack of accuracy
- **\Box** too small S/B in current Pb-Pb data
 - \rightarrow challenging task for thermal photon extraction (work in progress)

ALICE in RUN2

- higher rate possible: upgrade in TPC electronics
- **complete geometrical acceptance of TRD and current ITS**
- $\Rightarrow~$ large reduction of uncertainties of S and S/B
- □ ALICE with major upgrades (ITS, TPC and MFT) for RUN3
 - □ thermal photon radiation from QGP with low mass dileptons as major physics goal of the ALICE upgrade program
 - \Rightarrow accessing the excess with accuracy in measuring: $p_{\rm T}$ spectrum and elliptic flow of thermal photons

STAY TUNED!

THANK YOU FOR YOUR ATTENTION

Extra slides

ϕ and ω production in pp collisions at 7 TeV with dielectrons

\Box results of ω and ϕ from e^+e^- channel comparing to other decay modes

\Rightarrow Consistent within uncertainties \Rightarrow However, larger statistical and systematical uncertainties from e^+e^- channel

 R_{FB} and R_{pPb} with dimuons: p-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV

 $\frac{Y_{forward}}{Y_{hackward}}$ $\Box R_{FB} =$ $R_{FB} \left(\phi \rightarrow \mu^{^+} \, \mu^{^-} \right)$ ALICE p-Pb vs_n=5.02 TeV 2.96<|y_ms|<3.53 0.8 0.6 0.4 $1.5 < \textit{p}_{\rm T} < 7~{\rm GeV}/\textit{c}$ 0.2 $\textit{R}_{\textit{FB}} \sim 0.53 \pm 0.03 (\textit{stat.})$ 0 2 3 4 p_ (GeV/c)

 R_{FB} : flat vs p_T and $\neq 1$ \Rightarrow asymmetry in ϕ production in p-A collisions in forward and backward rapidity

Nuclear modification factor: $R_{pPb} = \Pi_{pP_{b}} (\phi \rightarrow \mu^{+} \mu^{-})$ ALICE p-Pb (Sun=5.02 Te) $\Gamma_{\mu h_{b}}^{\dagger}(\phi \rightarrow \mu^{\dagger} \mu^{\dagger})$ ALICE p-Pb vs....=5.02 TeV 2.03<v<3.53 -4.46<v<-2.96 1.5 1.5 0.5 0.5 forward rapidity backward rapidity 0 ٥ n p_ (GeV/c) p_ (GeV/c)

 $\rightarrow \sigma_{pp}$ at 5.02 TeV: interpolation from pp collisions at 2.76 and 7 TeV $\rightarrow T_{pPb}$ is nuclear overlap function in p-Pb collisions

AL TCF

Comparing to RHIC d-Au results and ALICE mid-rapidity results

bottom left figure: \Rightarrow similar trend as RHIC results in d-Au collisions at 200 GeV

- forward: saturation $p_{\rm T} > 3 \ {\rm GeV}/c$
- ❑ backward: R_{pPb} > 1: Cronin like peak

bottom right figure: \Rightarrow similar shape as ALICE charged particle R_{pPb} at mid-rapidity

ϕ yield in Pb-Pb collisions

 $BR\sigma_{\phi}/(BR\sigma_{\rho} + BR\sigma_{\omega})$

ϕ nuclear modification factor $\textit{R}_{\textit{AA}}$

 ❑ Comparison with result from \$\phi\$ → KK channel
 ❑ Agreement within uncertainties point by point
 ❑ However with different slope → possible difference in hydrodynamic push at mid-rapidity and forward rapidity?

ALI-PREL-51420