

The LHCb Trigger System: Present and Future

Johannes Albrecht (TU Dortmund) On behalf of the LHCb-HLT Project 5. December 2014

Experimentelle Physik V Teilchenphysik

- What is LHCb?
 - Detector design & geometry, physics, performance
- How do we trigger in the LHC environment
 - In the recent past (Run 1, 2010 2012)
 - Very successful running & triggering, >200 papers produced
 - In the near future (Run 2, 2015 2018)
 - Identical LHCb detector
 - Increased beam energy 7/8TeV → 13TeV
 - Similar luminosity as in Run 1

- In the longer future, called upgrade (Run 3, 2020++)

- Largely rebuilt & upgraded detector
- Increase instantaneous luminosity by factor 5

- LHCb: single arm spectrometer at the LHC
 - Precision beauty and charm physics
 - L= 4 * 10^{32} cm⁻²s⁻¹ (2* design), μ ~1.7 interactions per bunch crossing

- Extremely large σ_{bb} and σ_{cc} in LHC hadron collisions at 8TeV
 - corresponds to 30kHz bb and 600kHz cc in acceptance
- Trigger system classifies signal to large extend

Johannes Albrecht

Luminosity

- Luminosity levelling: stable running and trigger conditions for LHCb even with LHC running at high luminosity (L_{LHCb} = 4 x 10³²cm⁻²s⁻¹)
- Plans for 2015
 - $-\sqrt{s}$ = 13 TeV (HF cross section x2)
 - Bunch spacing 25ns (smaller pileup)
 - LHCb: ~same luminosity

Heavy Flavour Signatures

Beauty hadrons

- mass $m(B^+) = 5.28 \, {
 m GeV}$ daughter $ho_{
 m T} \, {\cal O}(1 \, {
 m GeV})$
- lifetime $\tau(B^+) \sim 1.6 \, \mathrm{ps}$ flight distance $\sim 1 \, \mathrm{cm}$
- common signature: detached $\mu\mu$ $B \rightarrow J/\psi X$ with $J/\psi \rightarrow \mu\mu$

30kHz

- mass $m(D^0) = 1.86 \, {
 m GeV}$ sizeable daughter $p_{
 m T}$
- I lifetime $\tau(D^0) \sim 0.4 \, \mathrm{ps}$ flight distance $\sim 4 \, \mathrm{mm}$
- can be produced in B decays

600kHz

Johannes Albrecht

40 MHz bunch crossing rate

- L0 hardware:
 - Implemented in custom made hardware
 - Decision to front-end in $4\mu s$
- HLT software
 - 29000 logical cores
 - Split in two levels:
 - Partial reconstruction (HLT1)
 - Full up front reconstruction (HLT2)
 - 5 kHz to storage
 (2kHz incl. B, 2 kHz charm,
 1kHz muons)

JINST 8 (2013) P04022 JoP 513 (2014) 012001

Optimize CPU/€: Deferred Triggering

Output

- LHC delivers ~30% of the time stable beams → 70% idle time for EFF
- Principle:
 - >1000 machines equipped with
 1-2TB local discs
 - Overcommit Farm by ~20-30%
 - Data that cannot be processed by the HLT is written to local disc
 - Process data in interfill gaps
- Effectively > 25% extra CPU

L0 hardware trigger performance

Muon based

- Very little punch-through and hadronic mis-ID
- Excellent overall performance
 - Efficiency ~ 60 95%
 - Output rate ~400kHz

Calorimeter based

- Large light quark (QCD) background, high rates and relatively low E_T resolution
- Performance
 - Efficiencies $\sim 20 50\%$
 - Output rate
 - ~500kHz hadron, 150kHz e[±] ,γ

- Full detector is read out at 1MHz
- At HLT1 level, only partial reconstruction done
- Inclusive selections
 - Dedicated generic b & c selection
 - Special path for muons
 - Few other special triggers
- Output rate ~80kHz

Inclusive beauty and charm trigger

- Single track, selected on PT and IP
- Dominant trigger for non-leptonic modes
- Output rate ~58kHz

Inclusive muon

- Single and dimuon selections
- Requirements on PT, IP or dimuon mass
- Total output rate ~14kHz

HLT second step: full reconstruction

- At HLT2 level, the event is fully reconstructed
 - Reconstruction performance close to offline (p_T>0.3GeV)
 - Extremely powerful, flexible software environment: heavy use of MVA-based selections, staged reconstruction (PID)
 - Combination of inclusive and exclusive selections, e.g.:

- Inclusive trigger on 2,3,4-body detached vertices
 - Primary trigger for B decays to charged tracks
- Uses fast BDT algorithm [JINST 8 (2013) P02013]

- Output rate: 2kHz (pure beauty signal)
- Efficiencies

	Average ε
B ⁰ →K⁺π⁻	78%
B ⁰ →D ⁺ π ⁻	76%

HLT2: dimuon and charm triggers

Inclusive dimuon

- Prompt and detached dimuon lines
- Muon ID identical to offline
- Total output rate ~1kHz

Exclusive charm

- Based on tight mass cuts
- Only $D^* \rightarrow D^0 \pi$ selected inclusively
- Total charm output rate ~2kHz

- Running at 13TeV
 - 15% increase of inelastic collision rate
 - 20% increase of multiplicity per collision
 - 60% increase of $\sigma_{\rm bb}$
- LHCb baseline: keep luminosity in 2015 at 4 * 10³² cm⁻²s⁻¹
- Bunch spacing will be reduced to 25ns
 - Number of visible collision reduced: $1.7 \rightarrow 1.1$

• Slightly simpler events than in 2012, but with more physics content

Run 2 trigger strategy

- More signal
 - \rightarrow more selective trigger
 - \rightarrow make trigger more compatible with offline

Requirements

- Alignment and detector calibration in real time
- Offline like RICH PID

Strategy

- Event buffering after HLT1 and used to run calibration
- Full offline-like selection in HLT2
- Additional ressources
 - CPU in Event Filter Farm doubled
 - Buffer storage: 1PB -> 4PB

Why upgrade LHCb?

Detailed discussion of the upgrade by R. Jacobsson (Tuesday)

- Key point: remove 1MHz detector readout bottleneck
 - Upgrade detector and DAQ to readout at 40MHz
 - Full software trigger building on architecture for LHC run II
- Large gains for hadronic triggers (and keep excellent muonic triggers)

Run 3 trigger strategy

CERN-LHCC-2014-016 LHCB-TDR-016

Full detector readout at 30MHz + fully software based trigger

- Software based Low Level Trigger (LLT) kept as backup
 - Uses limited information from muon / CALO
 - Can reduce HLT input rate by a factor 2
 - Not planned to be used in default scenario

- Event Filter Farm
 - O(1000) nodes
 - → 13ms on todays CPU
 - Total output rate 20 100kHz

Upgrade signal rates

Run 3

Upgrade conditions inside LHCb acceptance

Rates as a function of pT cut for part. reco. candidates

• Output rate (PT>2GeV, τ > 0.2ps)

[kHz]	b-hadrons	c-hadrons	long lived hadrons
Run 1	9	33	11
Run 3	270	800	260

Major challenge: discriminate between different signals
 → trigger must be maximally flexible and close to offline

Run 3 tracking

- Main challenge: tracking similar to offline in online time budget
 - Reconstruct all tracks without prior cuts at 30MHz

- Track finding performance
 - Track finding efficiency relative to offline: 98.7% (PT>0.5GeV)
 - Total tracking time ~ 50% of budget given by EFF size

• First time: Possible to reconstruct events at 30MHz at hadron collider

5. December 2014

Johannes Albrecht

- Use same strategy as Run 1 inclusive trigger (topological)
 - Based on BDT with corrected mass
- Performance depends on output rate
 - Three scenarios indicated (20, 50 and 100kHz)

Trigger performance in hadronic modes greatly improved

- Availability of up-front tracking allows efficient exclusive selections
- Special case: "lifetime unbiased" triggers
 - Trigger which introduces no bias on lifetime
 - − Removes the need to control acceptance effects
 → reduced systematic uncertainties
 - Challenge: control the CPU time needed to make all track combinations
- Typical performances
 - B→hh signal efficiency: 60% (D→hh: 10%)
 - CPU time: ~0.16ms

Summary

- LHCb trigger has been very successful in 2011 and 2012
 - Flexible implementation in software
 - Allows to quickly adapt to running conditions
 - Deferred triggering: optimize resources for mean usage of farm
- For Run 2: many improvements planned
 - implement online calibration \rightarrow high performance RICH particle ID
- Major upgrade of LHCb and its trigger planned for 2018
 - Concept: Full Software Trigger
 - Reconstruction of all events at inelastic collision rate
 - Allows very diverse, efficient triggers that minimally bias the physics observables (eg. lifetime unbiased hadronic triggers)

UPGRADE LHCb Trigger and Online

Technical Design Report 25/24

The end

- Inclusive trigger on 2,3,4-body detached vertices
 - Primary trigger for B decays to charged tracks
- Uses fast BDT algorithm [JINST 8 (2013) P02013]
- BDT inputs: p_T , $IP\chi^2$, flight distance χ^2 , mass and corrected mass

$$m_{
m corr} = \sqrt{m^2 + |p_{
m Tmiss}|^2} + |p_{
m Tmiss}|$$

*p*_{Tmiss}: missing momentum transverse to flight direction

Very efficient even on partially reconstructed beauty decays

Johannes Albrecht

Trigger-less readout & Bidirectional event builder

• Use PCIe Generation 3 as communication protocol to inject data from the FEE directly into the event-builder PC ...

- A much cheaper event-builder network because data-centre interconnects can be used on the PC, which are not realistically implementable on an FPGA (large software stack, lack of soft IP cores,...)
- Moreover PC provides: huge memory for buffering, OS and libraries.
 Up to date network adapter cards and drivers available as pluggable modules.

CERN-LHCC-2014-016 LHCB-TDR-016

Full detector readout at 30MHz + fully software based trigger

- Software based Low Level Trigger (LLT) kept as backup
 - Uses limited information from muon / CALO
 - Can reduce HLT input rate by a factor 2
 - Not planned to be used in default scenario

