

Fission of heaviest nuclei

H. Pasca, A. Andreev, <u>G. Adamian</u>, N. Antonenko

A of Fragments

General opinion:

The competition between symmetric and asymmetric fission is related to shell effects in deformed fissioning nucleus

U.Brosa, S.Grossmann, A.Muller, Phys.Rep.197(1990)167

Exper. data for high-energy (60MeV) neutroninduced fission of ²³⁸U shows the conservation of asymmetric mass distribution, even though shell effects are supposed to be damped.

I.V.Ryzhov et al., PRC83(2011) 054603

А

Exper. asymmetric mass yields result in fission of highly excited (~60 MeV) nuclei 232Th, 237-240U, 239-242Np, 241-244Pu, produced in transfer reactions 18O+232Th,238U,237Np !

K.Hirose PRL119(17)222501; PLB761(16)125

232Th(n,f) V.Simukhin NDS119(14)331; J.King EPJA53(17)238

Conservation of asymmetric mass distribution, even though shell effects are supposed to be damped !

Revolution in fission ?!

<u>Statistical Scission-point Model</u> or <u>Cluster model of fission</u>

 Scission-point model relies on assumption that the statistical equilibrium is established at scission where the observable characteristics of fission are formed.

 Scission system - two well-defined fission fragments in contact [dinuclear system=DNS].

<u>Model</u>

Coordinates Z_i , A_i , β_i (I = L, H), R completely describe the geometry of system

<u>Total Potential Energy</u>:

$$U(A_i, Z_i, \beta_i, R)$$

$$= U_L^{\text{LD}}(A_L, Z_L, \beta_L) + \delta U_L^{\text{shell}}(A_L, Z_L, \beta_L, E_H^*)$$

$$+ U_H^{\text{LD}}(A_H, Z_H, \beta_H) + \delta U_H^{\text{shell}}(A_H, Z_H, \beta_H, E_H^*)$$

$$+ V^C(A_i, Z_i, \beta_i, R) + V^N(A_i, Z_i, \beta_i, R)$$

 $V = V^C + V^N$ - interaction potential

Minima in potential are result of interplay between liquiddrop, interaction, shell correction energies !

- 1. Liquid-drop energy globally increases when mass number deviate from symmetry.
- 2. Interaction energy has the opposite behavior.
- **3.** Both depend on deformations of nuclei: larger deformations result in smaller interaction energy, larger liquid-drop energy.

Minimum becomes wider, migrates to larger deformations with increasing excitation energy

<u>Model</u>

<u>Yields</u>:

$$w(A_i, Z_i, \beta_i, E^*) = N_0 \exp\left[-\frac{U(A_i, Z_i, \beta_i, R_b)}{T}\right]$$

$$Y(A_i, Z_i, E^*) = \int d\beta_L d\beta_H w(A_i, Z_i, \beta_i, E^*)$$

$$Y(A_i, E^*) = \frac{\sum_{Z_i} Y(A_i, Z_i, E^*)}{\sum_{Z_i, A_i} Y(A_i, Z_i, E^*)},$$
$$Y(Z_i, E^*) = \frac{\sum_{A_i} Y(A_i, Z_i, E^*)}{\sum_{Z_i, A_i} Y(A_i, Z_i, E^*)}.$$

Ratio of yields of fragments with different charge/mass is governed by difference in energy and width between their potential minima in PES (β_L , β_H).

If two minima are close in energy, higher yield stems from (β_L, β_H) . with wider-shallower minimum, lower yield emerges from abrupt-narrow minimum.

Results

- 1.Fission at Low Excitation Energy (s.f., thermal neutron)
- 2.Fission at High Excitation Energy(e.-m.-,n-,HI-induced)
- 3. Fission of Heavy Actinides: Fm, No, Rf

Calculated charge distributions for electromagnetic-induced fission of ²³⁰⁻²³⁴U at exc. energy about 11 MeV

Exper. : K.-H.Schmidt *et al.*, NPA 665(2000)221.

Model	is	well	suited	<u>for</u>
<u>describ</u>	ing	both	asymm	<u>etric</u>
and	syr	nmetri	ic fis	ssion
distribu	tion	s as	well	as
transitio	on b	etwee	n two.	

High excitation energy of fissioning nucleus

Exper.:K.Hirose et al. PRL119(2017)222501

•••U

The change of charge/mass-yields with increasing isospin or excitation energy is related to the change of PES at scission point

Fission of heavy actinides

Potential energy at scission is main ingredient

- 1) Liquid-drop energy globally increases when mass number deviate from symmetry.
- 2) Interaction energy has the opposite behavior.
- 3) **Both** depend on deformations of nuclei: larger deformations result in smaller interaction energy, larger liquid-drop energy.
- 4) **Deformations** depend on shell effect: **magic** nuclei are expressed in small deformations.
- 5) Shell correction energy

Minima in potential or Maxima in yields are result of interplay between liquid-drop, interaction, shell correction energies.

- Shell effects affect indirectly (through deformations) appearance of minima of PES, facilitation of large number of magic fragments.
- As E* increases, shell and stiffness diminish, shifting and widening minima on PES.

Direct role of shell effects is expressed by their ability to enhance or suppress formation of minima of PES.

Saturation effect

At some critical excitation energy saturation of symmetric yields occurs.

Further increase of E* leads only to population of more asymmetric accessible configurations.

It is worth to be studied experimentally!

Charge distributions:

comparison of mass & charge yields

Is there a difference between mass and charge distributions ?

Experimental verifications of this unexpected difference between mass and charge distributions are desirable !

Transformation of shape of charge yields occurs in a similar fashion like one of mass yields, but slower with increasing E^{*}.

- The change of charge-, mass-yields with increasing isospin or excitation energy is related to the change of PES at scission point
- Maxima in yields are direct result of interplay between liquid-drop, interaction, shell correction energies
- Evolution of mass-yield shape with increasing isospin N Z occurs gradually
- Unexpected difference between charge and mass yields, 258Fm(sf), 260No(sf), 266Rf(sf)

- With increasing excitation energy the shapes of mass-, charge-yields change with different rates
- Saturation of symmetric yield occurs at excitation energy about 15 30 MeV

Thank You For Your Attention !