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Giant resonances: typical collective mode of surface vibration

classical and intuitive picture

L=2: Giant Quadrupole Resonance (GQR) 
L=3: High Energy Octupole Resonance (HEOR)

strongly excited by a one-body operator, exhaust a sum-rule valuebegin
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Nuclear response: appearance of modes of excitation

rich variety of modes: S (spin), T (isospin), and L (angular mom.)
vibration in spin-space, isospin-space and real-space, and coupling among them

influenced by many-body correlations (deformation and superfluidity)

Excitation energy

Tr
an

sit
io

n 
st

re
ng

th



rich variety of modes: S (spin), T (isospin), and L (angular mom.)
vibration in spin-space, isospin-space and real-space, and coupling among them

influenced by many-body correlations (deformation and superfluidity)

Excitation energy

Tr
an

sit
io

n 
st

re
ng

th

Nuclear response: appearance of modes of excitation



Nuclear response: appearance of modes of excitation
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rich variety of modes: S (spin), T (isospin), and L (angular mom.)
vibration in spin-space, isospin-space and real-space, and coupling among them

influenced by many-body correlations (deformation and superfluidity)
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occurrence of low-lying states associated with new physics

Nuclear response: appearance of modes of excitation
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Unique modes of excitation in neutron-rich nuclei

neutron-skin structure
a new degree of freedom

GDR

“pygmy”

neutron-skin excitation modes ??



Mysterious PDR
For a review: N. Paar et al., Rep. Prog. Rev. 70 (2007) 691
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is approximated by a finite difference with the nine-point
formula.

The first step of the investigation is to construct the
Hartree-Fock ground state, using the imaginary-time method.
Then, we solve the linear-response equation for the E1 external
field directly in the coordinate representation, avoiding explicit
construction of unoccupied orbitals. Therefore, our calculation
is free from a truncation for the unoccupied orbitals. Because
the explicit construction of the RPA matrix in the 3D mesh
representation is difficult, we use a new methodology, the
finite amplitude method (FAM) [34], in evaluation of the
residual field δh. The FAM allows us to construct δh using
the calculation of the Hamiltonian h only. The residual field
δh in our calculations contains all terms of the Skyrme in-
teraction (i.e., the residual spin-orbit interaction, the time-odd
components, the residual Coulomb interaction, and so on). The
linear-response equation is solved at given complex energies
ω = E + iγ /2 using iterative solvers, such as the general-
ized conjugate residual (GCR) method. The calculations are
performed at energies in spacing of $E = 0.3 MeV with a
fixed imaginary part 0.5 MeV, corresponding to the smearing
width γ = 1.0 MeV. Using the obtained RPA amplitudes,
we compute the E1 strength and the photoabsorption cross
section. Details of the calculation can be found in Ref. [35].

The E1 strength of even-even nuclei are calculated up
to zirconium isotopes from the proton to neutron drip lines,
except for nuclei with the neutron separation energy less than
2 MeV. This excludes the neutron drip-line nuclei in which
extended halos develop. In addition, the neutron-deficient
nuclei from the proton drip line to N = 50 are also calculated
for 40 < Z ! 50. The total number of the calculated nuclides
are 322:40 spherical nuclei, 171 prolate nuclei, 56 oblate
nuclei, and 55 triaxial nuclei.

The calculation shows that the PDR peaks appear in
every isotopic chain, as demonstrated in Fig. 1 for Ne and
Ca isotopes. Increasing neutron number with a fixed proton
number, we see that the emergence of the PDR suddenly takes
place at N = 16 for Ne and at N = 30 for Ca isotopes. In
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FIG. 1. (Color online) Calculated photoabsorption cross sections
in Ne and Ca isotopes.

Ca isotopes, the PDR is rather distinctive and separated from
the GDR peak. However, in the deformed neutron-rich Ne
isotopes, it is not well separated from the low-energy tail of
the GDR. Although it is not trivial how to define the PDR, the
separate low-energy peaks mostly appear at energies below
10 MeV. Thus, in this work, the pygmy dipole strength is
defined by the E1 strength at energies below 10 MeV.

We calculate fractions of the photoabsorption cross section
σ (E) integrated up to E = 10 MeV to the integrated total
cross section. This is equal to the ratio m1(PDR)/m1 where
m1(PDR) is the energy-weighted sum up to 10 MeV and
m1 is the energy-weighted sum-rule value that is larger than
the TRK value by 30% ∼ 40%. The upper panel of Fig. 2
shows the PDR fractions of stable and neutron-rich nuclei
as functions of neutron number. Here, we show isotopes
with 8 ! Z ! 40. In each isotopic chain, nuclei around the
stable region have small values of the fraction less than ∼1%,
consistent with the experimental data [5,6,10]. In these light
nuclei, a prominent PDR does not appear in stable nuclei.
Being away from the stable region, the fractions suddenly
increase at specific neutron numbers: N > 14, N > 28, and
N > 50. These “magic” numbers for the emergence of the
PDR indicate the presence of a strong shell effect of neutrons.
The first clear indication of the kink structure appears at
N = 14 → 16 for O, Ne, and Mg isotopes. For these isotopes,
the strength of the PDR has a strong correlation with the
number of neutrons occupying the orbits with low orbital
angular momenta (low-ℓ), s1/2 and d3/2 (N = 15 ∼ 20). In
a case that the low-ℓ neutron orbits are weakly bound, they
strongly expand in space because of the low centrifugal barrier.
The kink is weakened by increasing the proton number and
almost disappears for Si isotopes (Z = 14) in which N = 16
corresponds to the stable nucleus 30Si. This should be because
of the fact that these low-ℓ neutron orbits become more bound
for nuclei with larger Z. The neutrons start filling the f7/2
orbits at N > 20; then, the growing rate of the PDR strength
is reduced, which is most prominent for Mg isotopes.

The even more prominent kinks can be identified at the
magic numbers of N = 28 and N = 50. The PDR fractions
suddenly increase at N = 28 → 30 and continue to increase
until N = 34 where 2p shell are filled. The increasing rate of
the PDR fractions depends on the proton number. Namely, it
is the largest for small-Z isotopes, such as Si and Ar isotopes,
while increasing Z makes the rate smaller. Beyond N = 34, the
PDR fractions are roughly constant for 34 < N ! 50, in which
the neutrons are filling high-ℓ orbits of f5/2 and g9/2. They
again show a sudden increase at N = 50 → 52, then continue
to linearly grow up until 2d5/2 orbits are filled at N = 56.
Beyond that, it is difficult to see the definite trend because the
ordering of the orbits and the ground-state deformation change
from nucleus to nucleus, depending on Z and N . However, the
careful investigation suggests that the occupation of s1/2 and
d3/2 increases the PDR fraction, whereas that of h11/2 reduces
it. Thus, we may conclude that the spatially extended nature of
the low-ℓ neutron orbits near the Fermi level plays a primary
role for the the emergence and growth of the PDR. We have
also observed that the deformation tends to increase the PDR
strength, especially in the region N > 56. This may be from
two effects: the mixture of the low-ℓ components in the orbits

021302-2

Theoretical calculations predict
PDR appears in neutron-rich nuclei systematically
Its collectivity depends on the nucleus, and the model employed

T. Inakura et al., PRC84(2011)021302R

Unravelling the structure is a big issue in nuclear physics

isospin structure
vortical nature

Different probes needed

…
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Ô =
∑

στ

∫
drr2ψ†(rστ )ψ(rστ )

ω∥ ∝
1

R∥

ω⊥ ∝
1

R⊥

ω ∝
1

R

E =

∫
drE[ρ](r)

=

∫
dr

[ !2

2m
τ (r) + ESky[ρ](r) + EC[ρ](r)

]

δ2Aeff

δρ(r)δρ(r′)

q ∼ ρ̃

ρ̃(r) = ⟨ψ̂(r ↓)ψ̂(r ↑)⟩ ̸= 0

δ⟨Ĥ −
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IV dipole excitations in neutron-rich nuclei

analog of pygmy dipole mode??

any other types of excitation mode??

understanding of PDR in terms of iso-triplet states
isospin character of PDR
general mechanism for emergence of the PDR



Ca: N = 28-56 
Ni: N = 50-66 
Sn: N = 82-110

IV dipole excitations in neutron-rich nuclei

systematic calculation based on nuclear DFT

spherical systems for simplicity

Skyrme-HFB + proton-neutron QRPA

fully-selfconsistent calculation

cf. T=0 pairing does not affect the following discussions
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cross-shell (N→N-1) excitation in low-energy

excitation
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ÔKµ =

∫
dr
∑

σσ′

∑

ττ ′

rY1Kδσ,σ′⟨τ |τµ|τ ′⟩ψ̂†(rστ )ψ̂(rσ′τ ′)

F (r, r′) = δ(r, r′)rLYL

F (r, r′) = 1

⟨τ |τ±|τ ′⟩

m1 =

∫
dωωS(ω) =

1

2
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(quasi)neutrons are in the continuum when |λ|≃0
neutrons are weakly bound/

protons are deeply bound

Mechanism for occurrence of the low-lying states
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Effect of the low-lying dipole states on β-decay rate

Ca Ni

Allowed + FF transitions

RIBF (2014)

gradually dominating suddenly dominating
at N>50
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ÔKµσµτ =

∫
dr
∑

σσ′

∑

ττ ′

rY1K⟨σ|σµσ |σ′⟩⟨τ |τµτ |τ ′⟩ψ̂†(rστ )ψ̂(rσ′τ ′)

τµ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
1
√
2
(τx + τy) (µ = +1)

τz (µ = 0)
1
√
2
(τx − τy) (µ = −1)
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Appearance of the analog PDR

occupation of weakly-bound p3/2 (N>28), 
d5/2(N>50), and f7/2 and f5/2 (N>82)
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A. Light nuclei in the neutron-rich side
(6 ! Z ! 20 and N " Z)

First, we show the behavior of the low-lying E1 strength
in relatively light even-even isotopes with Z = 6–20 which
have a chemical potential larger than 2 MeV. Table I in
the Appendix shows the ground-state properties calculated
with the HF+BCS calculation for isotopes with 6 ! Z ! 20.
The results of the HF calculation neglecting the pairing
correlation are also shown for comparison. There are some
difference in the ground-state deformation between HF+BCS
and HF calculations, among which 32Mg shows the largest
difference, βHF

2 = 0.35 and βHF+BCS
2 = 0.0. Nevertheless, for

most isotopes, the pairing correlations do not drastically
change the ground-state properties.

Figure 7 shows the neutron-number dependence of fPDR for
C, O, Ne, and Mg isotopes. The solid lines with filled symbols
indicate the present results, which can be compared with
those of the Hartree-Fock plus random-phase approximation
(HF+RPA) [57] presented by the dashed lines with open
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FIG. 7. (Color online) Fraction of the low-lying E1 strength fPDR

in Eq. (13) as functions of the neutron number for C, O, Ne and Mg
isotopes. The solid lines with filled symbols show the present results
of Cb-TDHFB, while the dashed lines with open symbols show those
of HF+RPA.

symbols. The two kinds of calculations produce qualitatively
the same results. This confirms that the pairing plays a minor
role in the low-energy E1 strength function for these light
nuclei.

The isotopes with Z = 8–12 have fPDR less than 1.0%
for N ! 14. Then, there is a sudden jump in fPDR at N =
14 → 16 on every isotopic chain. The neutron number N = 16
corresponds to the occupation of s1/2 orbit. The important role
of the weakly bound s1/2 orbit in the low-energy E1 strengths
has been discussed in Ref. [57]. The present result confirms
that the pairing correlations do not change the main conclusion.
Note that the neutrons are in the normal phase ("n = 0) for
nuclei with N = 16. The largest deviation from the HF+RPA
result is seen in 32Mg, which is due to the large difference in
the ground-state deformation.

The HF+RPA calculation predicts that the next jump in
fPDR is at N = 28 → 30 [57]. N = 30 correspondS to the
occupation of p3/2 orbit. This is shown in Fig. 8, for S, Ar,
and Ca isotopes. The qualitative behaviors are identical to
those of the HF+RPA calculation. For Si, the kink of fPDR

disappears because the N = 28 magicity becomes weak in
the neutron-rich Si isotopes, leading to deformed shapes in
the mean-field calculation (see Table I). However, for S and
Ar isotopes, the sudden jump at N = 28 → 30 predicted by
the HF+RPA is now replaced by a gradual increase in the
slope around N = 28. This smooth evolution of the fPDR is
caused by the fractional occupation probability of the special
single-particle states, such as p3/2 and p1/2 orbits, due to the
pairing correlation. Again, the occupation of weakly bound
orbits with low orbital angular momenta (low-ℓ) increases the
low-energy E1 strength. Beyond N = 34, the neutrons start
occupying the f5/2 orbit, which reduces the slope in fPDR.

In contrast, for Ca isotopes, the sudden jump at N =
28 → 30 survives in the present calculation, mainly because
of a large shell gap at N = 28 which makes the neutron
pairing gap vanish ("n = 0). At N = 34, fPDR in the present
calculation becomes smaller than the result from HF+RPA.
This is due to the pairing effect. In the HF calculation, the
ground state in 54Ca corresponds to the full occupation of
the neutron p1/2 orbit. However, the HF+BCS calculation
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FIG. 8. (Color online) Same as Fig. 7, but for Si, S, Ar and Ca
isotopes.

024303-5

EBATA, NAKATSUKASA, AND INAKURA PHYSICAL REVIEW C 90, 024303 (2014)

produces fractional occupation probabilities of p1/2 (52.4%)
and f5/2 orbits (18.2%).

B. Medium-heavy nuclei in the neutron-rich side
(28 ! Z ! 50 and N " Z)

In Fig. 9, we show the neutron number dependence of
fPDR for isotopes with Z = 28–50. The characteristic cusps
can be seen at N = 50 and 82, which correspond to the
neutron magic numbers. While the neutrons are filling the
g9/2 intruder orbit (40 < Z ! 50), the PDR fraction stays
approximately constant with respect to the neutron number.
Especially, the isotopes with Z = 36–50 (Kr–Sn) have roughly
identical values of fPDR at N ! 50. Beyond N = 50, the
neutrons start occupying the d5/2 orbit; then, the rapid increase
in fPDR is clearly observed in Fig. 9. These are universal for
all the isotopes shown in Fig. 9, although the cusp behavior is
weakened by increasing the proton number. These are similar
to the cusps at N = 14 and 28 in lighter neutron-rich isotopes.

In addition, for the isotopes with Z = 32–44, the convex
cusps also appear at around N = 58–60 and around N =
72–74, while the concave ones can be seen at N = 60–62.
These cusps are most prominent around the proton subshell
(Z ≈ 40), while they become weaker approaching the magic
numbers, Z → 28 and Z → 50. This suggests that these may
be associated with the ground-state deformation.

Let us briefly comment on the deformation effect. In Ne
and Mg neutron-rich isotopes, the present results suggest that
the onset of deformation in the ground state increases fPDR.
However, the behavior in the present mass region is more com-
plex. fPDR decrease at the onset of deformation around; then,
they decrease again near N = 74, which corresponds to the
disappearance of the deformation back to the spherical shape.
In Sec. IV, we discuss the effect of deformation in more details.

The next jump in fPDR at N = 82 → 84 is clearly identified.
This suggests that the definition of the “low-ℓ orbits” is
different between light and heavy systems. The nuclei around
N = 82 are all calculated to be spherical, thus it cannot be the
effect of deformation. The single-particle orbit just above the
N = 82 shell gap is f7/2. In light nuclei, when the Fermi level
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FIG. 9. (Color online) The PDR fraction fPDR as functions of the
neutron number for even-even isotopes with Z = 28–50 and N " Z.

is located at the f7/2 intruder orbits (20 < N ! 28), the PDR
fraction does not increase (see Fig. 8). The behavior of fPDR

in the heavy isotopes seems to be very different from that in
light systems. The f orbit may be regarded as the low-ℓ orbit
for heavy nuclei with N > 82.

Finally, the effect of pairing should be noted. In Ref. [57],
similar studies with the HF+RPA were reported for isotopes
with Z ! 40. The neutron shell effect on fPDR is qualitatively
identical. However, the HF calculation for heavy isotopes
shows peculiar changes in the ground-state deformation from
one nucleus to the next, which leads to irregular behaviors
in fPDR in the region of N > 56. These irregular behaviors in
Ref. [57] are hindered in the present study. This is due to the
pairing correlation, which produces the fractional occupation
probabilities, suppressing the sudden changes in deformation
from nucleus to nucleus. Now, some systematic trends in
the region 56 < N < 82 can be observed in Fig. 9. For
instance, increasing the proton number from Z = 28, the kink
behavior around N = 60 becomes sharper toward Z = 38 (Sr)
and 40 (Zr); then, beyond Z = 40, it becomes weaker and
disappears near Z = 50 (Cd and Sn). A similar systematic
behavior can be also observed for kinks around N = 72.

C. Neutron skin thickness and PDR fraction

The classical picture of the PDR is a vibration of neutron-
skin against the core part, from which, the correlation between
skin-thickness and PDR is expected. In this section, we
perform a systematic investigation and present the correlation
between fPDR and the skin thickness "rrms for many isotopes.
The neutron skin thickness is defined by the difference in
root-mean-square radius of neutrons and protons, "rrms ≡√

⟨r2⟩n −
√

⟨r2⟩p.
Figure 10 shows fPDR as a function of the neutron skin

thickness. For Ge, Se, Kr, Sr, and Zr isotopes, a similar
investigation was performed with the HF+RPA [57]. A
consistent behavior with Ref. [57] is confirmed in the left
panel of Fig. 10. There is a linear correlation between fPDR and
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neutron skin thickness for even-even isotopes with Z = 28–50. The
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summed strength below the GR
excluding                type states
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Appearance of the analog PDR

occupation of weakly-bound p3/2 (N>28), 
d5/2(N>50), and f7/2 and f5/2 (N>82)
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NOT a single-particle excitation

superposition of 2qp excitations
~10

NOT coherent for a dipole operator
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Occurrence of the CE dipole states in n-rich nuclei

✓ cross-shell (N→N-1) excitation
neutrons are weakly bound

protons are deeply bound:
low-lying                excitation

protons are in the continuum:  
giant and pygmy resonances

✓ cross-shell (N-1→N) excitation
deeply-bound neutrons: 
giant resonance

−1ℏω

✓ cross-shell (N→N+1) excitation



Summary
✓low-lying dipole state appears uniquely in very n-rich nuclei
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✓strong shell effect
steady selection rule due to the deeply-bound proton orbitals
single-particle type excitation

# of neutron hole states satisfying the selection rule is limited

✓emergence of analog PDR below the giant resonance peak

✓loosely-bound neutrons with low-angular momentum play 
an important role

✓destructive for a dipole operator, while several 2qp excitations 
are involved

✓affects the half-life substantially
together with the axial-vector (spin-flip) dipole excitations


