Analog pygmy-dipole resonance and low-lying charge-exchange dipole state in neutron-rich nuclei

Kenichi Yoshida

Giant resonances: typical collective mode of surface vibration
classical and intuitive picture

L=2: Giant Quadrupole Resonance (GQR)
L=3: High Energy Octupole Resonance (HEOR)
strongly excited by a one-body operator, exhaust a sum-rule value

$$
\begin{gathered}
\hat{F}=\sum_{\sigma, \sigma^{\prime}} \sum_{\tau, \tau^{\prime}} \int d r r^{L} Y_{L}(\hat{r}) \hat{\psi}^{\dagger}(r \sigma \tau)\langle\sigma|\left\{\begin{array}{l}
1 \\
\sigma
\end{array}\right\}\left|\sigma^{\prime}\right\rangle\langle\tau|\left\{\begin{array}{l}
1 \\
\tau
\end{array}\right\}\left|\tau^{\prime}\right\rangle \hat{\psi}\left(r \sigma^{\prime} \tau^{\prime}\right) \\
\text { space } \quad \text { spin isospin }
\end{gathered}
$$

Nuclear response: appearance of modes of excitation

rich variety of modes: S (spin), T (isospin), and L (angular mom.)

vibration in spin-space, isospin-space and real-space, and coupling among them influenced by many-body correlations (deformation and superfluidity)

Nuclear response: appearance of modes of excitation

rich variety of modes: S (spin), T (isospin), and L (angular mom.)

vibration in spin-space, isospin-space and real-space, and coupling among them influenced by many-body correlations (deformation and superfluidity)

Nuclear response: appearance of modes of excitation

KY, T. Nakatsukasa, PRC83(2011)021304R

Nuclear response: appearance of modes of excitation

 rich variety of modes: S (spin), T (isospin), and L (angular mom.) vibration in spin-space, isospin-space and real-space, and coupling among them influenced by many-body correlations (deformation and superfluidity)
occurrence of low-lying states associated with new physics

Nuclear response: appearance of modes of excitation

KY, T. Nakatsukasa, PRC83(2011)021304R

Nuclear response: appearance of modes of excitation

Unique modes of excitation in neutron-rich nuclei

neutron-skin structure a new degree of freedom

neutron-skin excitation modes ??

Mysterious PDR

Theoretical calculations predict
PDR appears in neutron-rich nuclei systematically
Its collectivity depends on the nucleus, and the model employed

Unravelling the structure is a big issue in nuclear physics isospin structure vortical nature

Different probes needed

T. Inakura et al., PRC84(2011)021302R

IV dipole excitations in neutron-rich nuclei

$$
\hat{F}_{K \mu}=\int d r \sum_{\sigma \sigma^{\prime}} \sum_{\tau \tau^{\prime}} r Y_{1 K}(\hat{r}) \delta_{\sigma, \sigma^{\prime}}\langle\tau| \tau_{\mu}\left|\tau^{\prime}\right\rangle \hat{\psi}^{\dagger}(r \sigma \tau) \hat{\psi}\left(r^{\prime} \sigma^{\prime} \tau^{\prime}\right)
$$

analog of pygmy dipole mode??
understanding of PDR in terms of iso-triplet states isospin character of PDR
general mechanism for emergence of the PDR
any other types of excitation mode??

IV dipole excitations in neutron-rich nuclei

systematic calculation based on nuclear DFT
fully-selfconsistent calculation
Skyrme-HFB + proton-neutron QRPA

$$
\begin{aligned}
& \text { Ca: } N=28-56 \\
& \text { Ni: } N=50-66 \\
& \text { Sn: } N=82-110
\end{aligned}
$$

spherical systems for simplicity
cf. $T=0$ pairing does not affect the following discussions

IV dipole strength distributions $(\tau=-1)$

KY, PRC96(2017)051302R

 SkM ${ }^{*}$, $\Gamma=2.0 \mathrm{MeV}$

Mechanism for occurrence of the low-lying states

cross-shell $(N \rightarrow N-1)$ excitation in low-energy
$-1 \hbar \omega$ excitation
neutrons are weakly bound/ (quasi)neutrons are in the continuum when $|\lambda| \approx 0$

Onset of the low-lying states: strong shell effect

summed strength in low-energy ($\omega<15 \mathrm{MeV}, E_{\mathrm{T}}<0 \mathrm{MeV}$)

$\mathrm{vg}_{9 / 2} \rightarrow \pi f_{7 / 2}$
due to neutron pairing
gradual development

Onset of the low-lying states: strong shell effect

occupation of $2 \mathrm{~d}_{5 / 2}$
$\operatorname{vd}_{5 / 2} \rightarrow \pi p_{3 / 2}$
occupation of $2 f_{7 / 2}$
$v f_{7 / 2} \rightarrow \pi d_{5 / 2}$

Effect of the low-lying dipole states on β-decay rate

Allowed + FF transitions

gradually dominating

suddenly dominating

IV dipole strength distributions $(\tau=-1)$

KY, PRC96(2017)051302R

 SkM ${ }^{*}$, $\Gamma=2.0 \mathrm{MeV}$

Appearance of the analog PDR

summed strength below the GR excluding $-1 \hbar \omega$ type states

occupation of weakly-bound $\mathrm{p}_{3 / 2}$ ($\mathrm{N}>28$), $\mathrm{d}_{5 / 2}(\mathrm{~N}>50)$, and $\mathrm{f}_{7 / 2}$ and $\mathrm{f}_{5 / 2}(\mathrm{~N}>82)$

Appearance of the analog PDR

> summed strength below the GR excluding $-1 \hbar \omega$ type states

S. Ebata et al., PRC90(2014)024303

Microscopic structure of the analog PDR

Microscopic structure of the analog PDR

NOT a single-particle excitation
superposition of 2qp excitations
~10

Occurrence of the CE dipole states in n -rich nuclei
\checkmark cross-shell $(N \rightarrow N-1)$ excitation

$$
N+1
$$

neutrons are weakly bound
protons are deeply bound: low-lying $-1 \hbar \omega$ excitation
\checkmark cross-shell $(N \rightarrow N+1)$ excitation protons are in the continuum: giant and pygmy resonances
\checkmark cross-shell $(N-1 \rightarrow N)$ excitation deeply-bound neutrons: giant resonance
π
ν

Summary

\checkmark low-lying dipole state appears uniquely in very n-rich nuclei
$-1 \hbar \omega$ excitation
\checkmark strong shell effect
steady selection rule due to the deeply-bound proton orbitals single-particle type excitation
\# of neutron hole states satisfying the selection rule is limited
\checkmark affects the half-life substantially together with the axial-vector (spin-flip) dipole excitations
$\sqrt{ }$ emergence of analog PDR below the giant resonance peak
\checkmark loosely-bound neutrons with low-angular momentum play an important role
\checkmark destructive for a dipole operator, while several 2qp excitations are involved

