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Nuclear matter equation of state

and its isospin dependence



1.1 Strongly Interacting (QCD) Matter
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1.2 Nuclear Matter
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1.3 Role of Nuclear matter equation of state

E/A−M ≡


B.E ./A(N, Z) mass formula: ρ = ρ0, A . 300?

E(ρ,α) EoS: any ρ, α, large A

ρ(0) is (saturation) number density

α is proton-neutron asymmetry

Zur Theorie der Kernmassen. 457 

belle 4 folgt E (B~ ~) - -  E (C~ ~) = 9,7.10 -a ME., also ebenfalls nahezu 
11  9 106 e-V. Li3 s mi t r e  sogar unter Abgabe von Elektronen mit maximal 
11,3.10 -a 5IE. Energie in B% s zerfallen. 

Die Ubereinstimmung zwisehen Theorie und Erfahrung in Fig. 4 und 5 
ist noch nieht vSllig befriedigend., wenn auch die groBen Zi:tge riehtig 
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Fig  5. Verlauf der l~ackungsanteile 

wiedergegeben sin4. Vielleicht l'~t~t sich die Ubereinstimmung durch eine 
konsequentere Durchfiihrung der 5{ethode II noeh verbessem; vielleieht 
s sieh hier abet auch sehon d_as Ph~nomen des Schalenabschlusses, 
auf das Oamow (1. e.) und E l sas se r  (1. e.) hingewiesen haben. Das st~rkste 
Argument' dafiir, dab unsere Darstellung nicht nut eine Interpolations- 
formel ist, sondern konkrete physikalische Bedeutung hat, liegt wohl darin, 
4a13 die Kernradien, die lediglieh arts dem Verlauf der Rinne und der 
Packungsanteile durch energetische Betrachtangen gewonnen sind, re_it 
den direkt bestimmten Radien innerhalb der Fehlergrenzen iibereinstimmen. 

w 1. Der allgemeine Verlauf 4er Massendefekte wirer 4iskutiert. 
w 2. Der Anstieg tier Packungsanteile nach der Seite der leichten Keme 

hin 1/iI~t sich dutch die knnahme einer Oberfl/ichenspannung 4er ,,Kern- 
flfissigkeit" darstellen. Den wiehtigsten Beitrag zu dieser Oberfl~iehen- 
spannung liefert die yon 4er Unbestimmtheitsrelation geford_erte Ver- 
sehmierung des Kernrandes. Dieser Effekt l~l~t sich in 4er Thomas-Fermi- 
Metho4e beriicksiehtigen, wenn 4i0 Eigen[unktionen in jedem kleinen 
Teilvolumen des Kerns nieht als ebene Wellen, sondern als Wellen mit 
linear variieren4er Amplitud_e angesetzt werden. Es ergibt sieh ein Zusatz- 
glied zur kinetischen Energie yon tier Form 

h 2 (grad ~))~ 
32 ~2 M ~o 

B.E. vs A from Weisäcker1935 ZTK96

a ≈ 7.76 × 10−4 and α ≈ 5.28, with a robust correlation
coefficient of r ≈ 0.98. Note that the exponent α is
consistent with the scaling behavior suggested in
Eq. (1). Also note that predictions for tidal polarizabilities,
stellar radii, and neutron skins are made without ever
changing the parameters of each individual model.
As already alluded in Fig. 2, limits imposed on the tidal

polarizability by GW170817 rule out the four models with
the stiffest symmetry energy. Now Fig. 3 illustrates how the
impact of the Λ1.4⋆ ≤ 800 limit translates into a limit on the
stellar radius of a 1.4M⊙ neutron star of R1.4⋆ < 13.76 km.
This is in excellent agreement with the R1.4⋆ < 13.9 km
limit inferred previously from Fig. 1. However, the Λ1.4⋆ ≤
800 limit is now stringent enough to rule out all but the four
models with the softest symmetry energy. Given that both L
and R208

skin are correlated to the radius of “low-mass” neutron
stars [52], deducing limits on these two quantities from the
radius of a 1.4M⊙ neutron star may be model dependent.
Nevertheless, using the stiffest of the models that survives
the Λ1.4⋆ ≤ 800 constraint as a guideline (i.e., TAMUC-
FSUa) one obtains: R1.4⋆ ¼ 13.6 km, R208

skin ¼ 0.25 fm, and
L ¼ 82.5 MeV. It is important to note that while we have
used a relatively large and representative set of relativistic
mean-field models, our findings should be confronted
against other theoretical approaches to test the robustness
of our conclusions.
We conclude by displaying in Fig. 4 the “holy grail” of

neutron-star structure: the mass-vs-radius (MR) relation.

Note that each EOS generates a unique MR relation.
Interestingly, the inverse statement is also true: exact
knowledge of the MR relation uniquely determines the
EOS [53,54]. Typically, the EOS is written as a sum of two
distinct contributions: (a) one for symmetric matter having
equal number of neutrons and protons and (b) one for the
symmetry energy to account for deviations from the
symmetric limit. For RMF models of the kind described
here, the maximum stellar mass is largely controlled by the
high-density component of the EOS of symmetric matter.
In contrast, stellar radii—as well as tidal polarizabilities—
are sensitive to the symmetry energy at about twice nuclear-
matter saturation density. However, stellar radii are also
sensitive to the EOS of the inhomogeneous crust [55–57].
At densities relevant to the inner crust, the system exhibits
rich and complex structures that emerge from a dynamical
competition between short-range nuclear attraction and
long-range Coulomb repulsion. Because of this complexity,
at present the EOS of the inner crust is not well known.
Hence, for this region we have adopted the EOS described
in Ref. [58]. As already mentioned, all RMF models
generate an EOS that is sufficiently stiff to support a M⋆ ≈
2M⊙ neutron star [45,46]. In addition, Fig. 4 incorporates
our newly inferred 13.76 km upper limit on R1.4⋆ .
Interestingly enough, a lower limit on the stellar radius
of a 1.6M⊙ neutron star of R1.6⋆ ¼ 10.68þ0.15

−0.04 was obtained
by Bauswein et al., under the assumption that the BNS
merger did not result in a prompt collapse [59]. Finally, we
use the results obtained in Fig. 3 to deduce a lower limit on
the tidal polarizability of a 1.4M⊙ neutron star. To do so,
we note that PREX imposes a lower bound on the neutron-
skin thickness of 208Pb of R208

skin ≃0.15 fm, which corre-
sponds to a stellar radius of R1.4⋆ ≃12.55 km. Using the fit
displayed in Fig. 3, the limit on R1.4⋆ translates into a
corresponding lower limit on the tidal polarizability of
Λ1.4⋆ ≃490; see Ref. [60] for an alternative extraction of a
lower bound on the tidal deformability parameter. Thus,
combining observational constraints from the LIGO-Virgo
Collaboration with laboratory constraints from the PREX
Collaboration, the tidal polarizability of a 1.4M⊙ neutron
star falls within the following range of values: 490≲
Λ1.4⋆ ≲ 800.
In summary, we have examined how the historical first

detection of gravitational waves from the merger of two
neutron stars improves our knowledge of the EOS of dense
matter. While the BNS merger provides fundamental
insights on the site of the r process and confirms its
association to short γ-ray burst, our aim in this Letter was
to illuminate its connection to laboratory observables. Such
a connection is possible because of the sensitivity of the tidal
polarizability to the stellar radius, which probes the sym-
metry energy at about twice nuclear-matter saturation
density. Assuming that one can extrapolate down to satu-
ration density, constraints from GW170817 provide limits
on the neutron-skin thickness of 208Pb—a fundamental
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FIG. 4. Mass-vs-radius relation predicted by the ten RMF
models discussed in the text. Mass constraints obtained from
electromagnetic observations of two neutron stars are indicated
with a combined uncertainty bar [45,46]. In contrast, the arrows
indicate constraints on stellar radii obtained exclusively from
GW170817 and exclude many of the otherwise acceptable
EOSs. The excluded causality region was adopted from Fig. 2
of Ref. [55].

PHYSICAL REVIEW LETTERS 120, 172702 (2018)

172702-4

M-R relation from Fattoyev+2018 PRL120

Nuclear matter equation of state

connects the worlds of nuclei and astronomical objects

over the discrepancy of 18 magnitude in size and 55 magnitude in nucleon number
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1.4 Energy density functional as EoS

Nuclear matter equation of state

E(ρ,α) = ESNM (ρ) + α
2S(ρ) + O(α4)

ESNM (ρ) = ε0 +
1

2
K0x2 +

1

6
Q0x3 + · · ·

S(ρ) = J + Lx +
1

2
Ksymx2 +

1

6
Qsimx3 + · · ·

α = (N − Z)/A, x = (ρ − ρ0)/3ρ.

Incompressibility

K0(α) = K0 + Kτ︸︷︷︸
isospin dep.

α2 + O(α4)

Kτ = Ksym − 6L +
Q0

K0
L

Kτ=-258

Kτ=-285

Kτ=-344

Kτ=-380

Fattoyev+2013

A mission of nuclear study

Determine or restrict coefficients of EoS to

construct “realistic” interaction
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1.5 Nuclear matter incompressibility

Incompressibility at a new

saturation density x̄

E(ρ,α) = ε0(α) + K0(α)x̄2 + · · ·

K0(α) = K0 + K∞τ α
2 + O(α4)

K∞τ = Ksym − 6L −
Q0

K0
L

K∞τ is isospin dependence of infinite nuclear

incompressibility and consists of a arithmetic

combination of expansion coefficients at the

normal density.

Eur. Phys. J. A (2014) 50: 26 Page 9 of 12

Fig. 8. Values of K∞ and Kτ calculated from the parameter
sets of various interactions as labeled [31]. The vertical and
horizontal lines indicate the experimental ranges of K∞ and
Kτ , as determined from the GMR work.

for a number of interactions used in nuclear structure and
EOS calculations. It would appear, indeed, that a vast ma-
jority of the interactions fail to meet the criterion estab-
lished by these measurements. A caveat to this statement,
though: the Kτ obtained in these measurements is only an
“average” value, and the data cannot disentangle the vol-
ume symmetry from higher-order effects like the surface
symmetry. Thus, this average value has been identified
with the volume symmetry only, and compared with the
volume symmetry coefficient provided by the models. It
is possible, then, to execute similar fits including higher-
order terms and obtain very different values for Kτ [52];
however, the “appropriateness” of the values of the extra
terms thus obtained remains unclear.

7 Spin-dipole resonances and neutron skin

As was mentioned in sect. 3, the neutron skin gives an im-
portant information about the constraints on the symme-
try energy. It is known that the model-independent non–
energy-weighted sum rule of charge exchange spin-dipole
(SD) excitations is directly related to the neutron skin
thickness [53]. Recently, SD excitations were studied in
90Zr by the charge-exchange reactions 90Zr(p,n)90Nb [54]
and 90Zr(n,p)90Y [55], and the model-independent sum
rule for the SD excitations were extracted in ref. [56] by
using multipole decomposition analysis (MDA) [57]. The
charge exchange reactions (3He, t) on Sn isotopes were also
studied to extract the neutron skin thickness [58]. How-
ever, one needs the counter experiment (t, 3He) or (n,p)
on Sn isotopes in order to extract the model-independent
sum rule value from experimental data. This counter ex-
periment is missing in the case of Sn isotopes.

The operators for λ-pole SD transitions are defined as

Ŝλ
± =

∑

i

ti±ri[σ ⊗ Yl=1(r̂i)]
λ=0,1,2, (31)

with the isospin operators being denoted as t± = tx±ity.
The model-independent sum rule for the λ-pole SD oper-
ator Ŝλ

± can be obtained as

Sλ
− −Sλ

+ =
∑

i∈all

| ⟨i | Ŝλ
− | 0⟩ |2−

∑

i∈all

| ⟨i | Ŝλ
+ | 0⟩ |2

= ⟨0 | [Ŝλ
−, Ŝλ

+] | 0⟩ =
(2λ + 1)

4π
(N⟨r2⟩n − Z⟨r2⟩p). (32)

The sum rule for the spin-dipole operator (31) then be-
comes

S− − S+ =
∑

λ

(Sλ
− − Sλ

+) =
9

4π
(N⟨r2⟩n − Z⟨r2⟩p). (33)

It should be noted that the sum rule (33) is directly re-
lated to the difference between the mean square radius
of neutrons and protons with the weight of neutron and
proton numbers.

Let us now discuss the integrated SD strength. The
integrated SD strength,

m0(Ex) =
∑

λπ=0−,1−,2−

∫ Ex

0

dB(λπ)

dE′ dE′, (34)

is plotted as a function of the excitation energy Ex in
fig. 9 for the operators Ŝλ

− and Ŝλ
+ in eq. (31). The value

S− is obtained by integrating up to Ex = 50MeV from the
ground state of the daughter nucleus 90Nb (Ex = 57MeV
from the ground state of the parent nucleus 90Zr), while
the corresponding value S+ is evaluated up to Ex =
26MeV from the ground state of 90Y (Ex = 27.5MeV
from the ground state of 90Zr). This difference between
the two maximum energies of the integrals stems from the
isospin difference between the ground states of the daugh-
ter nuclei, i.e., T = 4 in 90Nb and T = 6 in 90Y. That is,
the 23.6MeV difference originates from the difference in
excitation energy between the T = 6 Gamow-Teller states
in the (p,n) and (n,p) channels [56]. For both the S− and
S+ strength, the calculated results overshoot the experi-
mental data in the energy range Ex = 20–40MeV. These
results suggest a quenching of 30–40% of the calculated
strength around the peak region. However, the integrated
cross sections up to Ex = 56MeV in fig. 9 approach the
calculated values for both the t− and t+ channels.

The ∆S = S− −S+ value is shown as a function of Ex

in the lower panel of fig. 9. We note that the ∆S value sat-
urates both in the calculated and the experimental values
above Ex = 40MeV, while the empirical values S− and S+

themselves increase gradually above Ex = 40MeV. This is
the crucial feature for extracting the model-independent
sum rule ∆S = S− −S+ from the experimental data. The
empirical values S−, S+ and ∆S obtained from these anal-
yses are shown in table 1. The indicated uncertainties of

Colo+2014 EPJA50
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1.6 Isospin dependence of nuclear incompressibility and ISGMR

EISGMR =

√
~2KA

m < r2 >

ISGMR is a direct measure of incompressibility.

Incompressibility of symmetric nuclear matter and

its isospin dependence can be obtained directly by

experiments.

VOLUME 82, NUMBER 4 PHY S I CA L REV I EW LE T T ER S 25 JANUARY 1999

giant dipole resonance (IVGDR) followed the prescription
of Satchler [16] using neutron and proton rms radii from
Hartree Fock random phase approximation (HF-RPA) cal-
culations [17].
Since the GMR cross section is strongest at 0± and de-

creases rapidly with angle, whereas for other multipoles it
is about either constant or slight increases over this angle
range, monopole strength distributions were obtained by
subtracting [11,12] a spectrum taken at a larger angle
(uavg ¯ 1.8±) from a spectrum taken at a smaller angle
(uavg ¯ 1.1±). This enhances the GMR relative to E2
and isovector E1 strength. The simplest possible straight
line continuum adjustment was made to bring the spec-
trum to zero at the edges of the E2, E0 peak, resulting
in the spectra shown in Fig. 2. A 24Mg spectrum is also
shown to illustrate the proximity of the 13.85 MeV state
used to check the calibration. The spectra shown in Fig. 2
were then each fit with two Gaussians, one for the gi-
ant quadrupole resonance (GQR) and one for the GMR.
Typical fits are shown along with the E0 EWSR per-
centages obtained. The GQR strengths shown in Fig. 2
agree nicely with DWBA for Pb but are somewhat larger
than predicted by DWBA for Zr, Sn, and Sm. A rela-
tively small change in continuum shape would bring these
in agreement also. The expected IVGDR contribution is
shown except for Pb, where it is essentially zero.
As the primary goal of these experiments was to mea-

sure the GMR energy, the effects of the continuum were
assessed by making five different adjustments (all smooth
and monotonic with Ex) ranging from unreasonable with
a bias toward low excitation through the simple straight
one used for Fig. 2 to unreasonable with a bias toward
high excitation. For Pb the maximum difference in the
GMR centroid was 80 keV with a standard deviation of
33 keV. For Zr the maximum difference was 45 keV and
the standard deviation was 22 keV. Results for the other
nuclei fell between these. For each nucleus, eight statis-
tically independent data sets were obtained (one of which
is shown in Fig. 2). The weighted average excitation en-
ergies obtained from the data are given in the first column
of Table I. The errors quoted are the larger of the stan-
dard deviations among the eight sets of data (144Sm and
208Pb) or the errors obtained from the peak fitting (90Zr
and 116Sn) and include calibration errors and those due
to the continuum adjustments discussed above. The en-
ergies obtained are compared to those in the literature [3]
with the smallest quoted error in Table I. Our results are
in excellent agreement with these previous measurements.
However, what is needed to compare with theory are the
moments [1] of the E0 strength distribution rather than
the moments of the cross section. As the cross section
is a strong function of excitation energy for a constant
strength [11,12], the moments of the strength distributions
are shifted significantly from those of the cross section.
For 208Pb the centroid of the cross section and the cen-
troid of the strength sm1ym0d differ by 330 keV, well out-

FIG. 2. Difference spectra obtained as described in the text
are shown by the histograms. Best fits for the GMR (dashed
line) and GQR (short-long dashed line) are shown and the
expected (from DWBA) strength of the IVGDR is indicated
by the broad gray line. The fifth panel shows a 24Mg spectrum
for uavg ≠ 1.1±.

side the errors of the present measurements. In previous
experimental works, the moments of the cross section
were reported rather than the moments of the E0 strength.

692

Youngblood+1999PRL82, 116Sn(α,α′) at 240 MeV

Nuclear incompressibility and isospin dependence Kτ

KA ∼ K0(1 + cA−1/3) + Kτ[(N − Z)/A]2 + KCoulZ2A−4/3

Measure the nuclear incompressibility by changing (N − Z)/A, i.e. along isotopic chain
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1.7 Previous works at RCNP

measurements with inelastic ! scattering [7,21,23,24], and
although resonance parameters for GMR in the Sn isotopes
close to the values reported here have been extracted in the
past using less accurate techniques [21], the potentially
large systematic errors in those values necessitated the
present measurements where such problems have been
eliminated. We find that the GMR energies in the Sn
isotopes are lower than the values predicted in recent
theoretical calculations even though the interactions used
in these calculations reproduce the GMR energies in the
‘‘standard’’ nuclei, 208Pb and 90Zr, very well. Also, we
obtain a value K" ! "550# 100 MeV from these data.

The experiment was performed at the ring cyclotron
facility of the Research Center for Nuclear Physics,
Osaka University, using inelastic scattering of 400-MeV
! particles over the angular range 0$ –8.5$. Details of the
experimental technique and the data analysis procedure
have been provided previously [5,6,8] and are only briefly
described here. Inelastically scattered ! particles were
momentum analyzed with the magnetic spectrometer
‘‘Grand Raiden’’ [25] and detected in the focal-plane
detector system composed of two multiwire drift chambers
and two scintillators, providing particle identification as
well as the trajectories of the scattered particles. The
vertical position spectrum obtained in the double-focused
mode of the spectrometer was exploited to eliminate all
instrumental background [5,6,8]. The background-free
‘‘0$’’ inelastic spectra for the Sn isotopes are presented
in Fig. 1. In all cases, the spectrum is dominated by the
GMR peak near Ex% 15 MeV.

In order to extract the GMR strengths, we have em-
ployed the now standard MDA procedure [26]. The

cross-section data were binned into 1-MeVenergy intervals
between 8.5 and 31.5 MeV and the experimental 17-point
angular distribution d#exp

d! &$cm; Ex' for each excitation-
energy bin was fitted by means of the least-squares method
with a linear combination of calculated distributions
d#cal

L
d! &$cm; Ex', so that

 

d#exp

d!
&$cm; Ex' !

X7

L!0

!L&Ex'
d#cal

L

d!
&$cm; Ex'; (2)

where d#cal
L

d! &$cm; Ex' is the calculated distorted-wave Born
approximation (DWBA) cross section corresponding to
100% energy-weighted sum-sure (EWSR) for the Lth
multipole. The DWBA calculations were performed fol-
lowing the method of Satchler and Khoa [27] using the
density-dependent single folding model, with a Gaussian
!-nucleon potential for the real part, and a Woods-Saxon
imaginary term. We have used the transition densities and
sum rules for various multipolarities as described in
Ref. [28]. The optical model parameters were obtained
from analysis of elastic scattering cross sections measured
in a companion experiment.

Although all strength distributions up to L ! 3 have
been reliably extracted from the multipole decomposition,
only the GMR strengths, the focus of this Letter, are shown
in Fig. 2. The solid lines in the figure represent Lorentzian
fits to the observed strength distributions. The choice of the
Lorentzian shape is arbitrary; the final results are not
affected in any significant way by using, for example, a
Gaussian shape instead. The finite strength at the higher

FIG. 1. Excitation-energy spectra for all even-A Sn isotopes,
obtained from inelastic ! scattering at $lab! 0:69$.

FIG. 2. GMR strength distributions obtained for the Sn iso-
topes in the present experiment. Error bars represent the uncer-
tainty due to the fitting of the angular distributions in MDA. The
solid lines show Lorentzian fits to the data.

PRL 99, 162503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 OCTOBER 2007

162503-2

112−124Sn (α,α′) at RCNP, Eα = 400 MeV

Multipole decomposition (Lmax = 7)

Li+2008 PRL99, Li+2010 PRC81

hence the rounded value K! ! "550# 100 MeV quoted
earlier in the text. This result is consistent with the value
K! ! "500# 50 MeV obtained recently from an analysis
of the isotopic transport ratios in medium-energy heavy-
ion reactions [34]. As shown in Ref. [18], this value
provides constraints on the radius of a 1:4M$ neutron
star that are in rather good agreement with recent observa-
tional data. Thus, from the data on the compressional-
mode giant resonances, we now have ‘‘experimental’’ val-
ues of both K1 and K! which, together, can provide a
means of selecting the most appropriate of the interactions
used in EOS calculations. For example, this combination of
values for K1 and K! essentially rules out a vast majority
of the Skyrme-type interactions currently in use in nuclear
structure calculations [33]. A similar conclusion was
reached for EOS equations in Ref. [35]. Furthermore, a
more precise determination of K! provides additional mo-
tivation for measurement of isoscalar monopole strength in
unstable nuclei, a focus of investigations at RIKEN and
GANIL, for example [36,37].

In summary, we have measured the energies of the
isoscalar giant monopole resonance (GMR) in the even-A
112–124Sn isotopes via inelastic scattering of 400-MeV "
particles at extremely forward angles. The GMR energies
are significantly lower than those predicted for these iso-
topes by recent calculations. Further, the asymmetry term,
K!, in the expression for the nuclear incompressibility has
been determined to be "550# 100 MeV.

We express our gratitude to G. Colò and J. Piekarewicz
for providing results of their calculations prior to publica-
tion. This work has been supported in part by the National

Science Foundation (Grants No. INT03-42942 and
No. PHY04-57120), and by the Japan Society for the
Promotion of Science (JSPS).
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FIG. 4 (color online). Systematics of the difference KA "
KCoulZ2A"4=3 in the Sn isotopes as a function of the ‘‘asymmetry
parameter’’ [%N " Z&=A&]; KCoul ! "5:2 MeV [33]. The solid
line represents a least-squares quadratic fit to the data.
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Kτ = −550 ± 100 MeV

S. Ota(CNS) GR in Tin132 and its neighbors (COMEX6, Oct. 29 - Nov. 02) 10/24



1.8 Kτ project: ISGMR in nuclei far from stability

KA︸︷︷︸
to be measured

∼ K0(1 + cA−1/3) + Kτ [(N − Z)/A]2︸           ︷︷           ︸
to be varied

+KCoulZ2A−4/3
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Measurement of ISGMR in unstable

nucleus and Kτ



2.1 From Normal to Inverse kinematics

Missing mass spectroscopy

M2 = ‖Pbeam + Ptarget − Pdetected‖
2

detect

Normal

132Sn

d
d

‖Pbeam‖ = ‖Pdetect‖
∂M

∂Pbeam
∼ ∂M

∂Pdetect

detect

Inverse

132Sn
d

d

132Sn

‖Pbeam‖ ∼ M � ‖Pdetect‖
∂M

∂Pbeam
� ∂M

∂Pdetect
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2.2 Kinematics of recoil in region of interest

TPC TPC+Si

 (deg)θ
0 10 20 30 40 50 60 70 80 90

TK
E 

(M
eV

)

1−10

1

10

θCM=2゜

1020

0.3

Ex 0

Recoil particle around 2 degrees at Ex = 15 MeV

TKE ∼ 0.3 MeV ⇔ range ∼ 0.19 mg/cm2 in D2

⇒ Needs “gas target + tracking detector” = ACTIVE TARGET TPC
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2.3 Active target CAT-S

CAT-S

for scattering experiments with high-intensity heavy radioactive beams

• Beams up to 1 Mcps, upto A ≥ 130 (space

charge), 100-300 MeV/u (delta rays)

• 10 × 10 × 25−cm3 active area

• Pure D2, H2, (He) at 0.2 − 1 atm

• Dual gain thick GEM

• 7-mm side 4 pad (400 in total)

• Trajectory by fitting Bragg curve

• Two silicon detectors beside TPC

• δE x ≤ 1 MeV, δθCM ≤ 1 deg

Silicon

Beam 

DG-THGEM

beam

recoil

recoil
readout plane
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2.4 Acceptance of CAT-S TPC

 (deg)θ
0 10 20 30 40 50 60 70 80 90

T
K

E
 (

M
eV

)

1−10

1

10

• Covers Ex 15 MeV at

θCM ∼ 2deg. with an

efficiency of about 20%.

• Ex : 0 - 20 MeV

• θCM : 1.5 - 2 (dep. on Ex)

• Typically δTKE/TKE ∼ 0.1

and δθlab ∼ 1deg ⇒

δE x ∼ 1 MeV and

δθCM < 1deg
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2.5 First measurement of ISGMR in Tin-region nuclei at RIBF

RIBF113 (S. Ota, U. Garg et. al) : Measurement of ISGMR in 132Sn

CAT-S ESPRI

Diamond
LP-MWDCLP-MWDC

Diamond
LP-MWDC

800kcps 350kcps

RIBF113

132Sn 21%
133Sb 48%
134Te 26%

• 132Sn(d,d ′) at 114 MeV/u

• CAT-S with 0.4-atm deuterium

• Beam PID by TOF−Bρ35 − Bρ37

• Recoil PID by comparing two χ2’s of

fitting assuming proton and deuteron

Bragg curves
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2.6 Energy spectra of deuteron inelastic scattering

Preliminary uncorrected energy spectra for 132Sn, 133Sb, and 134Te.

Particle identifications of beam and recoil particles have been done.

(In presentation, preliminary spectra for for 132Sn, 133Sb, and 134Te are shown)
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2.7 Deduction of ISGMR and ISGQR in 133Sb

Assumptions

• only two GRs in 10-20-MeV region

(weakness of LE-ISGDR)

• relative position of ISGMR and ISGQR

• fixed widths of ISGMR and ISGMR

Method

Least square method with binned functions of

two Lorentzian, one Gaussian and flat

distributions, corresponding to ISGMR,

ISGQR, unknown strength and quasi-free

background, respectively.

(In presentation, preliminary result for
133Sb is shown)
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2.8 Deduction of ISGMR and ISGQR in 132Sn and 134Te

(In presentation, preliminary result for
132Sn is shown)

(In presentation, preliminary result for
134Te is shown)
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2.9 Comparison with theory

(In presentation, here is comparison with

theoretical calculation)

Case of 132Sn

Calculations : Sagawa+ Private

Communication
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2.10 Isospin dependence of nuclear incompressibility

With assumptions mentioned

previously.

• only two GRs in 10-20-MeV

region

• relative position of ISGMR

and ISGQR

• widths of ISGMR and ISGMR

(In presentation, preliminary Ktau with systematic

trend is shown.)
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2.11 Outlook: Towards the precise determination of Kτ

KA ∼ K0 + Ksurf A−1/3 + (KτV + KτSA−1/3)︸                 ︷︷                 ︸
Kτ

[(N − Z)/A]2 + KCoulZ2A−4/3

• Analysis of backward angle data in 132Sn(d, d ′) and try MDA

• How to deal with effect of surface term?

• Theoretically deduce Kτ in the same manner of experimental one, namely, quadratic

fit of calculated ISGMR energy, OR directly compare ISGMR energies

• Experimentally deduce the surface or higher order terms.

Isobar chain (fix A and vary (N − Z)/A) and several A
or N=Z chain (vary A and fix (N − Z)/A)

or ISGMR energy nuclear chart like mass one.

Next step

We can measure ISGMR in heavy unstable nuclei now.

More measurements of ISGMR in unstable nuclei ⇒ effective setup
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2.11 Outlook: Towards the precise determination of Kτ

KA ∼ K0 + Ksurf A−1/3) + (Kτ + KτSA−1/3)[(N − Z)/A]2 + KCoulZ2A−4/3

Kτ project

ISGMR in isomer, isobar, N=Z

0.242

0.182

0.121

0.107 0.1940.074

A=132

Sn

Xe

Ba

Ce

Nd
0.091(N-Z)/A

isotope

isobar
stable
unstable

CAT-M (32 x 28 x 20 cm3)

Commissioned in 2017

10 times statistics for same run time

Application for other reactions
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2.12 Summary

• The first measurement of ISGMR in 132Sn was performed at RIBF and successfully observed the

strength of GRs around 10-20 MeV.

• Active targets CAT-S and CAT-M are ready for experiments

• ISGMRs in larger area of nuclear chart will be performed toward the precise determination of Kτ

• Another programs with CAT-M

• GDR, PDR and other GRs via (p, p′), (d, d ′), and (α,α′)

• Electron capture rate in Iron-group nuclei

• Transfer reactions at OEDO/SHARAQ (pair condensation, GPV)

• ... open for collaborations
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