Recent Results from Proton Scattering Experiments at RCNP

Atsushi Tamii

Research Center for Nuclear Physics (RCNP), Osaka University

6th Int. Conf. on Collective Motion in Nuclei under Extreme Conditions (COMEX6) 29 October - 2 November, 2019, Cape Town

Dec-2012

Outline

Experimental methods proton scattering at forward angles

Research highlights

- I. Electric Dipole Polarizability and Nuclear Symmetry Energy
- II. Spin Magnetic Excitations
- III. Gamma-Decay of GRs and ED excitations PDR and GDR
- IV.Fine Structure and Nuclear Level Density

2

Experimental Methods

Proton Scattering Experiments at Forward Angles

Research Center for Nuclear Physics (RCNP), Osaka University

AVF Cyclotron Facility

High-Resolution Spectrometer "Grand Raiden"

Proton scattering at very forward angles

0-deg transmission mode

B(E1): continuum and GDR region Method 1: Multipole Decomposition

Included E1/M1/E2 or E1/M1/E3 (little difference)

Grazing Angle = 3.0 deg

9

Comparison between the two methods

Probes of the Electric Dipole Response

- 1. Real photon absorption
 - (γ, γ') Nuclear Resonance Fluorescence
 - (γ,n), (γ,2n), ...
- 2. Virtual photon excitations (Coulomb excitation)
 - Invariant mass method with an unstable nucleus beam
 - Missing mass method with proton inelastic scattering

3. Excitation by nuclear force with p, α or ¹⁷O inelastic scattering

- Total excitation strengths for all the decay channels (inclusive)
- Single shot measurement across S_n in $E_x = 5(7)-22(32)$ MeV.
- High energy resolution (20-30 keV)
- MDA or Polarization Transfer

 \rightarrow extraction of E1

Comparison with (γ, γ') and (γ, xn)

E1 Response of ²⁰⁸Pb

The electric dipole transition strength in ²⁰⁸Pb has been determined.

Π

Electric Dipole Polarizability and Symmetry Energy

Electric Dipole Polarizability (α_D)

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_{D} = \frac{\hbar c}{2\pi^{2}} \int \frac{\sigma_{abs}^{E1}}{\omega^{2}} d\omega = \frac{8\pi}{9} \int \frac{dB(E1)}{\omega}$$

first order perturbation calc. A.B. Migdal: 1944

Electric dipole moment $p = \alpha_D \times E$ α_D : electric dipole polarizability

nucleus in a static electric field with fixing the c.m. position

Electric Dipole Polarizability (α_D)

Electric dipole moment

$$p = \alpha_D \times E$$

 α_D : electric dipole polarizability

nucleus

The **restoring force** originates from the **symmetry energy** due to the difference of ρ_n and ρ_p on the surface.

Electric Dipole Polarizability (α_D) in the correlation of *J* and *L*

X. Roca-Maza et al., PRC88, 024316(2013)

Correlations observed in various interaction sets in the framework of EDF.

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

insights from the droplet model

Precise determination of a_D of ²⁰⁸Pb gives a constraint band in the *J*-*L* plane.

E

Electric Dipole Polarizability: ²⁰⁸Pb, ¹²⁰Sn

Convergence: EDP vs TRK

Good Convergence!

Constraints on J-L and the n-skin thickness

RCNP ¹²⁰Sn: T. Hashimoto *et al.*, PRC**92**, 031305(R)(2015).

Electric Dipole Polarizability of ⁶⁸Ni Invariant mass spectroscopy by Coulomb Excitation

Constraints on J-L and the n-skin thickness

X. Roca-Maza et al., PRC92, 064304(2015)

- **RCNP** ²⁰⁸Pb: AT *et al.*, PRL**107**, 062502 (2011).
- **RCNP** ¹²⁰Sn: T. Hashimoto *et al.*, PRC**92**, 031305(R)(2015).
- **GSI** ⁶⁸Ni: D.M. Rossi *et al.*, PRL**111**, 242503 (2013).

Dipole Polarizability of ⁴⁸Ca

where the EDF and ab-initio calculations meet

Theory: Darmstadt-Tennessee-TRIUMF

J. Birkhan et al., PRL 118, 252501 (2017)

Sn isotope Chain: P. von Neumann-Cosel, in this session

Constraints on J and L

QMC

S. Gandolfi, J. Carlson et al., EPJA50, 10 (2014)

χEFT

I. Tews, K. Hebeler et al., PRL110, 032504(2013) K. Hebeler et al., et al., EPJA50, 11 (2014)

Constraints from the N-Star Merger GW170817

Tidal Deformation Parameters

N-Star Radius (1.4M_☉)

 $\begin{array}{ll} R^{1.4} < 13.76 \ km & \mbox{F.J. Fattoyev et al., PRL120, 172702(2018)} \\ 12.00 < R^{1.4} < 13.45 \ km & \mbox{E.R. Most et al., PRL120, 261103(2018)} \\ 9.0 < R^{1.4} < 13.6 \ km & \mbox{I. Tews et al., talk in the next session} \end{array}$

N-star merger GW analysis is giving constraints on the nuclear EOS that are consistent with the study of atomic nuclei.

Further observations!

II Spin-M1 Excitations

IS/IV-spin-M1 Squared Nuclear Matrix Elements (SNMEs)

IS/IV-spin-M1 Squared Nuclear Matrix Elements (SNMEs)

H. Matsubara et al., PRL115, 102501 (2015)

- Summed up to 16 MeV.
- Compared with shell-model predictions using the USD interaction

np Spin Correlation Function

np spin correlation function in the g.s.

$$\vec{S}_{n} \equiv \sum_{i}^{N} \vec{S}_{n,i} \qquad \vec{S}_{p} \equiv \sum_{i}^{Z} \vec{S}_{p,i}$$
$$\left\langle \vec{S}_{n} \cdot \vec{S}_{p} \right\rangle = \frac{1}{4} \left\langle \left(\vec{S}_{n} + \vec{S}_{p} \right)^{2} - \left(\vec{S}_{n} - \vec{S}_{p} \right)^{2} \right\rangle$$
$$= \frac{1}{16} \left(\sum \left| M \left(\vec{\sigma} \right) \right|^{2} - \sum \left| M \left(\vec{\sigma} \tau_{z} \right) \right|^{2} \right)$$

- : *np* spin correlation function of the nuclear ground state
 - → probes isoscalar *np*-pairing in the ground state

np Spin Correlation Function

III

Gamma-Decay of GRs and Electric Dipole Excitations

Gamma Emission from Giant Resonances for NC v-detection with water Čerenkov and Liquied scintillation detectors

Mandeep, Sudo, Sakuda et al., publication in preparation

CAGRA+GR Campaign Exp. Oct-Dec 2016

LAS at 61 deg

beam

GRAF

- **1. Structure of the PDR** $(\alpha, \alpha' \gamma)$ and $(p, p' \gamma)$ on ⁶⁴Ni, ^{90,94}Zr, ^{120,124}Sn, ^{206, 208}Pb
- 2. Inelastic v-nucleus response C. Sullivan et al., PRC98, 015804 (2018)

to beam dump ~ 7m -

3. Super-deformed states, high-spin states

CAGRA(Clover Ge Arra

E. Ideguchi and M. Carpenter Clovers: ANL+Tohoku+IMP

Collaboration

Talks by F. Crespi and N. Kobayashi on Friday

Construction of GRAF

Grand RAiden Forward mode beam line

2012.12-2013.1 Proposal

- FY2013 GRAF Design/Construction
- 2014.7 Physics Runs

Miki, Hashimoto, Nagayama, Morinobu, Matsuda, Fujita, Iwamoto, Yoshida, Ideguchi, Aoi, Hatanaka, Tamii

GRAF under construction, March 17, 2014

Construction of GRAF

Grand RAiden Forward mode beam line

Morinobu, Matsuda, Fujita, GR at 4.5-19.0 deg Iwamoto, Yoshida, Ideguchi, Aoi, Hatanaka, Tamii beam GR at 4.5 deg beam 0 1 2n LAS at 61 deg GRAF under construction, March 17, 2014

Miki, Hashimoto, Nagayama,

Zero degree Transmission Mode

CAGRA+GR Campaign Exp. Oct-Dec 2016

1. Structure of the PDR *1 $(\alpha, \alpha' \gamma)$ and $(p, p' \gamma)$ on ⁶⁴Ni, ^{90,94}Zr, ^{120,124}Sn, ^{206, 208}Pb

Gamma-Decay of GDR: Damping Mechanism

RCNP, TUD, Milano, KVI, iThemba LABS/Wits, ELI-NP, IFJ-PAN, ..

Characteristic width Γ across the IVGDR

IV Fine Structure and Nuclear Level Density

Fine Structure of the GDR

Fine Structure of the GDR

20-30 keV resolution is required. ⁵

Nuclear Level Densities extracted by fluctuation analysis using auto-correlation function

Summary

Experimental methods proton scattering at forward angles

Research highlights

- I. Electric Dipole Polarizability and Nuclear Symmetry Energy
- II. Spin Magnetic Excitations
- III. Gamma-Decay of GRs and ED excitations PDR and GDR
- IV.Fine Structure and Nuclear Level Density

COMEX6 Oct-2018