Recent progress in quests of Spin and Spin-isospin excitations

COMEX6, October 29, Cape Town, South Africa

Hiroyuki Sagawa RIKEN/University of Aizu

- 1. Introduction
- 2. Competitions between IS and IV pairing correlations in N=Z nuclei Superfluidity phase: IS spin-triplet pairing interaction
- 3. Spin and Gamow-Teller transitions from High Spin Isomers
- 4. Summary and future perspectives

Three dimensions in research of Spin-Isospin modes

T-> high isospin (radioactive beams), isospin Fermisphere

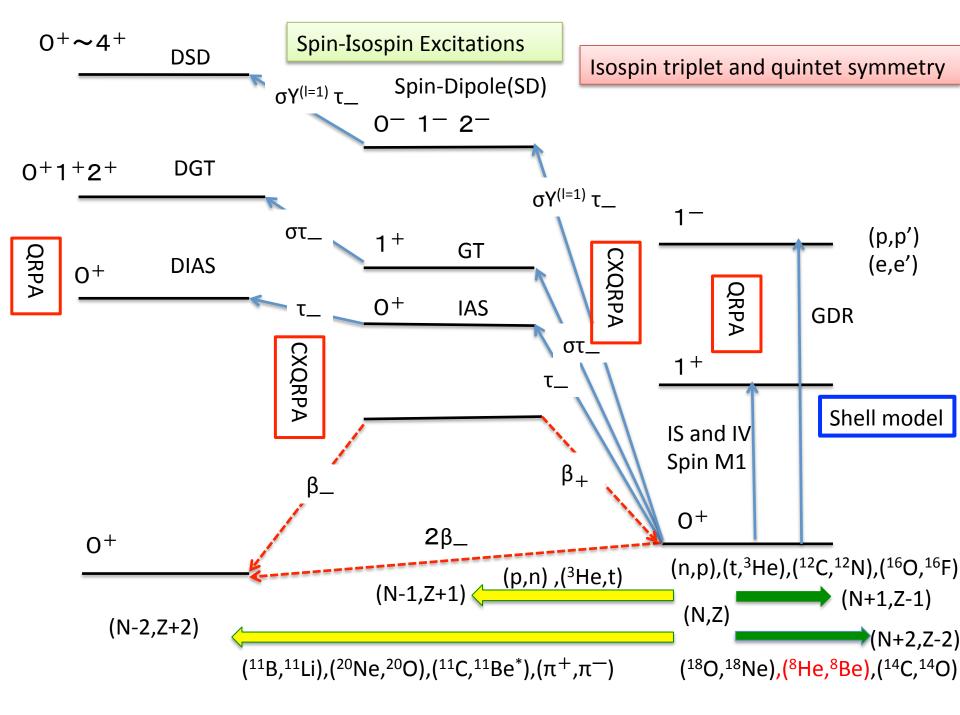
J-> high spin (isomer beams), spin Fermisphere

dilute-density (halo, skin) -> n-p pair, alpha condensation

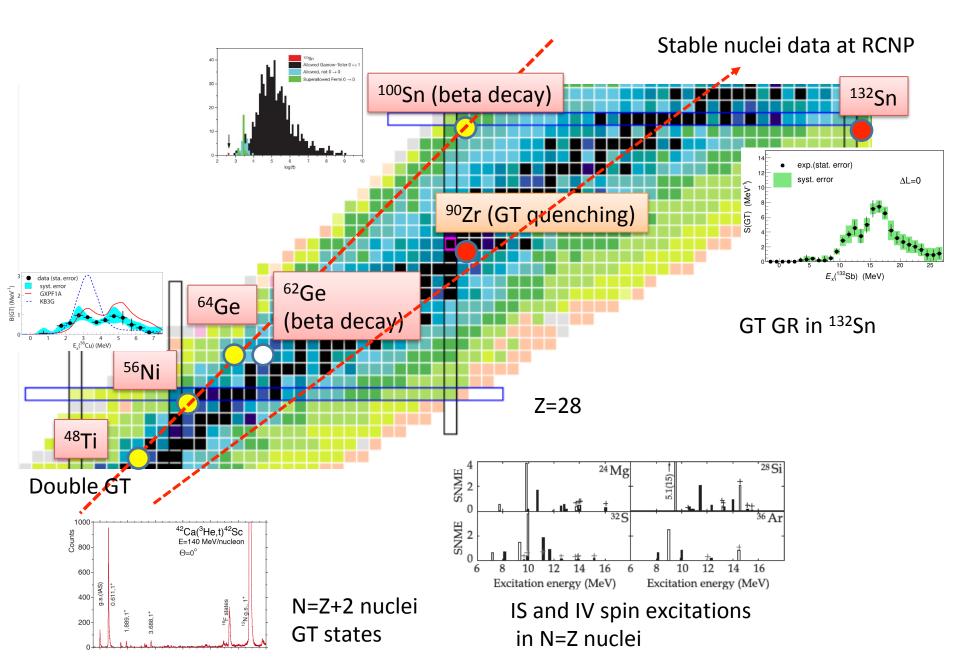
pair transfer reactions (nn, pp, pn)

Charge-exchange reactions (Single and double)
 Spin-isospin responses (GT, SD, DGT, DSD...)

Light ions: (p,n), (n,p), (³He,t), (t,³He) Heavy ions: (¹¹B,¹¹Li), (²⁰Ne,²⁰O), (¹¹C,¹¹Be^{*}), (¹⁸O,¹⁸Ne), (⁸He,⁸Be), (¹⁴C,¹⁴O)



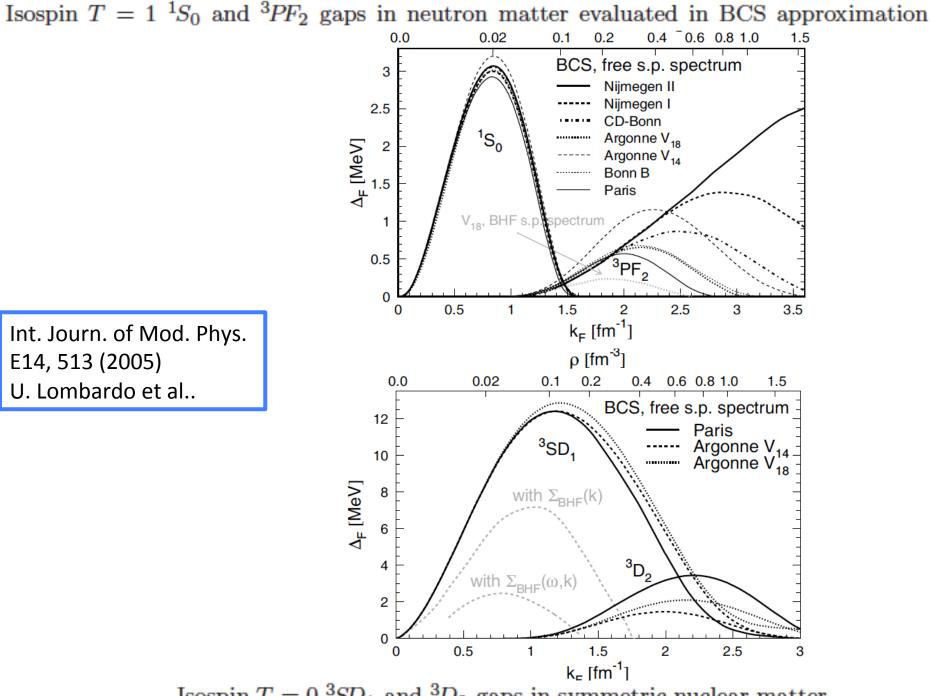
Recent Progresses in spin-isospin excitations



Competition between IS spin-triplet and IV spin-single pairing correlations

Gamow-Teller transitions in N=Z+2 nuclei

n-p pair condensation in nuclei with N~Z



Isospin T = 0 ³ SD_1 and ³ D_2 gaps in symmetric nuclear matter

Gamow-Teller Transitions in nuclei with N=Z+2 C.L. Bai, HS, G. Colo, Y. Fujita et al., PRC90, 054335 (2014)

> HFB+QRPA with T=1 and T=0 pairing T=1 pairing in HFB T=0 pairing in QRPA

$$\hat{O}(GT) = \sigma \tau_{\pm}$$

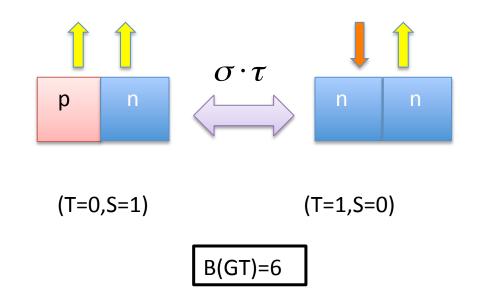
 σ , τ and $\sigma\tau$ are generators of SU(4)

Supermultiplet : Wigner SU(4) symmetry (E. Wigner 1937, F. Hund 1937) (T=1, S=0) →(T=0, S=1) GT transition is allowed and enhanced.

$$V_{T=1}(\mathbf{r}_{1}, \mathbf{r}_{2}) = V_{0} \frac{1 - P_{\sigma}}{2} \left(1 - \frac{\rho(\mathbf{r})}{\rho_{o}} \right) \delta(\mathbf{r}_{1} - \mathbf{r}_{2}), \quad (1)$$
$$V_{T=0}(\mathbf{r}_{1}, \mathbf{r}_{2}) = f V_{0} \frac{1 + P_{\sigma}}{2} \left(1 - \frac{\rho(\mathbf{r})}{\rho_{o}} \right) \delta(\mathbf{r}_{1} - \mathbf{r}_{2}), \quad (2)$$

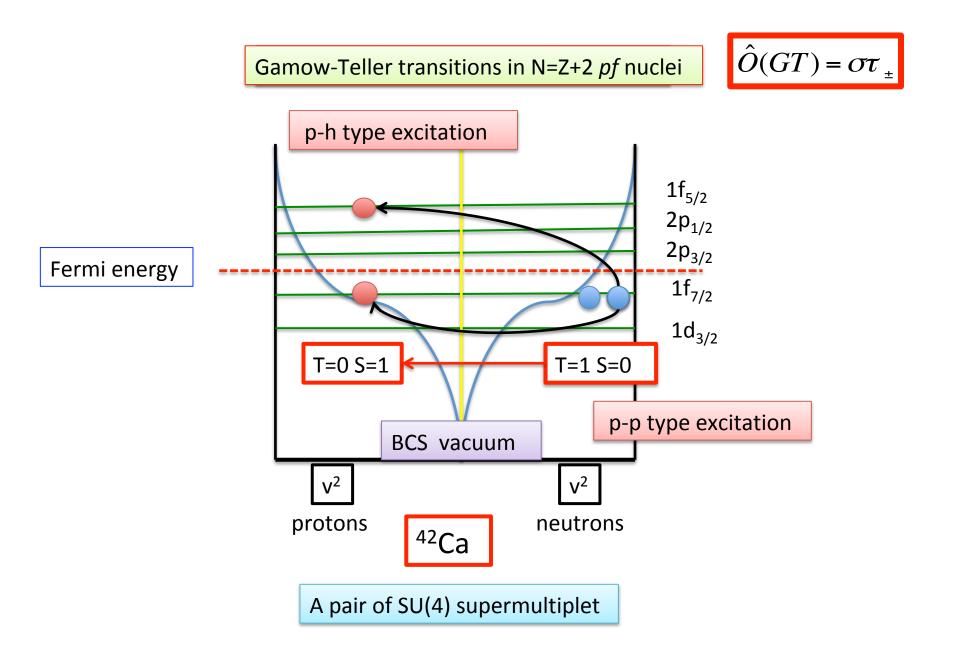
Supermultiplet : Wigner SU(4) symmetry $(T=1, S=0) \rightarrow (T=0, S=1)$ GT transition is allowed and enhanced.

Spacial symmetry is the same between the initial and final states

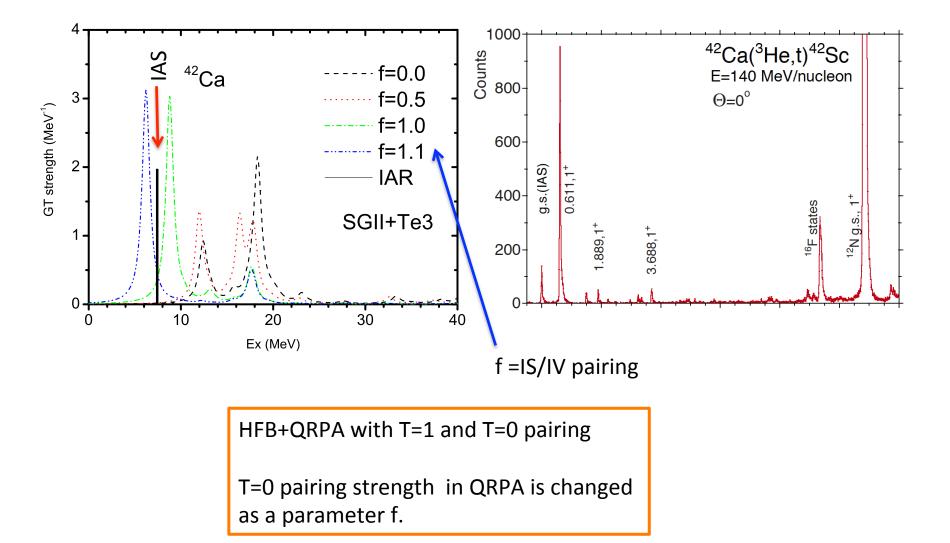


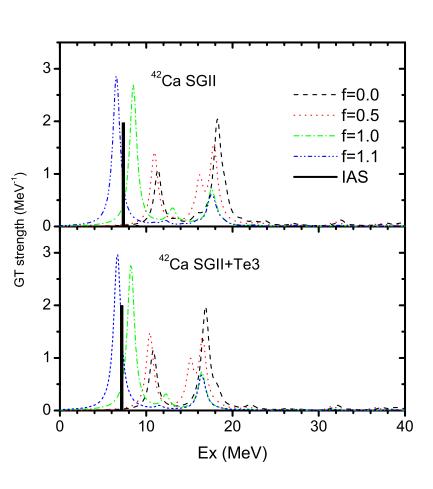
Well-known in light p-shell nuclei (LS coupling dominance)

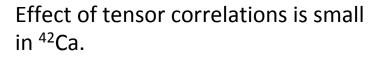
What happens in **pf shell nuclei** with strong spin-orbit and spin-triplet pairing interactions?

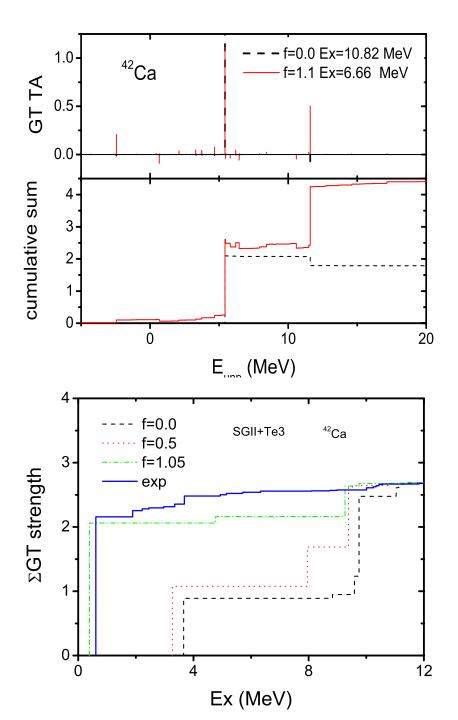


spin spiple of population of the states on spin spiple of the second sec

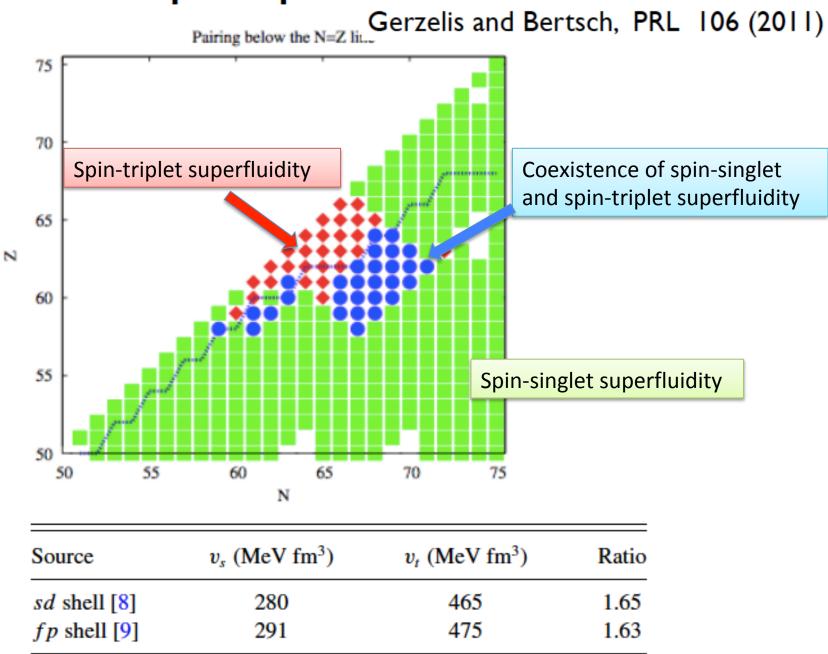








Neutron-proton pair condensates



G.F. Bertsch and Y. Luo, PRC81, 064320 (2010)

Deformed HFB calculations with a realistic interaction in N=Z nuclei: a competition between T=0 and T=1 pairing interactions

Eunja Ha *, Myung-Ki Cheoun [†]

Department of Physics and Origin of Matter and Evolution of Galaxy (OMEG) Institute, Soongsil University, Seoul 156-743, Korea

H. Sagawa[‡]

RIKEN, Nishina Center for Accelerator-Based Science,

Eunja Ha, Myung-Ki Cheoun, H. Sagawa, Phys. Rev. C, 97 024320 (2018).

Eunja Ha, Myung-Ki Cheoun, H. Sagawa, Phys. Rev. C, 97 064322 (2018).

+preprint (2018)

Deformed HFB with a realistic interaction (CD Bonn)

T=1 channel nn,pp,np T=0 channel np

Nuclear Hamiltonian

 $H = H_0 + H_{\text{int}}$, $H_0 = \sum \epsilon_{\rho_\alpha \alpha \alpha'} c^{\dagger}_{\rho_\alpha \alpha \alpha'} c_{\rho_\alpha \alpha \alpha'}$ $\rho_{\alpha}\alpha\alpha'$ $\rho_{\alpha}\rho_{\beta}\rho_{\gamma}\rho_{\delta},\alpha\beta\gamma\delta,\alpha'\beta'\gamma'\delta'$ $a^{\dagger}_{\rho_{\alpha}\alpha\alpha''} = \sum_{\rho_{\beta}\beta\beta'} (u_{\alpha\alpha''\beta\beta'}c^{\dagger}_{\rho_{\beta}\beta\beta'} + v_{\alpha\alpha''\beta\beta'}c_{\rho_{\beta}\bar{\beta}\beta'}),$ **HFB** transformation $a_{\rho_{\alpha}\bar{\alpha}\alpha''} = \sum \left(u_{\bar{\alpha}\alpha''\bar{\beta}\beta'} c_{\rho_{\beta}\bar{\beta}\beta'} - v_{\bar{\alpha}\alpha''\bar{\beta}\beta'} c_{\rho_{\beta}\beta\beta'}^{\dagger} \right).$ (6) $\alpha, \beta, \gamma, \delta$: real (bare) s.p. states with Ω α',β' : isospin quantum number (bare) particle (p and n)

 α ", β ": isospin of quasi-particle (1 and 2)

ρ_α: sign of Ω, ±Ω (angular momentum projection on the symmetry axis)

Deformed BCS transformation

$$\begin{aligned} a^{\dagger}_{\rho_{a}\alpha\alpha''} &= \sum_{\rho_{\beta}\beta\beta'} (u_{\alpha\alpha''\beta\beta'}c^{\dagger}_{\rho_{\beta}\beta\beta'} + v_{\alpha\alpha''\beta\beta'}c_{\rho_{\beta}\bar{\beta}\beta'}), \\ a_{\rho_{a}\bar{\alpha}\alpha''} &= \sum_{\rho_{\beta}\beta\beta'} (u_{\bar{\alpha}\alpha''\bar{\beta}\beta'}c_{\rho_{\beta}\bar{\beta}\beta'} - v_{\bar{\alpha}\alpha''\bar{\beta}\beta'}c^{\dagger}_{\rho_{\beta}\beta\beta'}). \quad (6) \\ \begin{pmatrix} a^{\dagger}_{1} \\ a^{\dagger}_{2} \\ a_{\bar{1}} \\ a_{\bar{2}} \end{pmatrix}_{\alpha} &= \begin{pmatrix} u_{1p} & u_{1n} & v_{1p} & v_{1n} \\ u_{2p} & u_{2n} & v_{2p} & v_{2n} \\ -v_{1p} & -v_{1n} & u_{1p} & u_{1n} \\ -v_{2p} & -v_{2n} & u_{2p} & u_{2n} \end{pmatrix}_{\alpha} \begin{pmatrix} c^{\dagger}_{p} \\ c^{\dagger}_{n} \\ c_{\bar{p}} \\ c_{\bar{n}} \end{pmatrix}_{\alpha} , \end{aligned}$$

where the u and v coefficients are calculated by the following DBCS equation

$$\begin{pmatrix} \epsilon_{p} - \lambda_{p} & 0 & \Delta_{p\bar{p}} & \Delta_{p\bar{n}} \\ 0 & \epsilon_{n} - \lambda_{n} & \Delta_{n\bar{p}} & \Delta_{n\bar{n}} \\ \Delta_{p\bar{p}} & \Delta_{p\bar{n}} & -\epsilon_{p} + \lambda_{p} & 0 \\ \Delta_{n\bar{p}} & \Delta_{n\bar{n}} & 0 & -\epsilon_{n} + \lambda_{n} \end{pmatrix}_{\alpha} \begin{pmatrix} u_{\alpha''p} \\ u_{\alpha''n} \\ v_{\alpha''p} \\ v_{\alpha''n} \end{pmatrix}_{\alpha} = E_{\alpha\alpha''} \begin{pmatrix} u_{\alpha''p} \\ u_{\alpha''n} \\ v_{\alpha''p} \\ v_{\alpha''n} \end{pmatrix}_{\alpha}$$

Pairing Gaps

$$\Delta_{nn}, \Delta_{pp}$$
: real
 Δ_{np} : complex

$$\begin{split} \Delta_{p\bar{p}_{\alpha}} &= \Delta_{\alpha p\bar{\alpha} p} = -\sum_{r=J} g_{pp} F^{J0}_{\alpha a\bar{\alpha} a} F^{J0}_{\gamma c\bar{\delta} c} G(aacd, J, T = 1) (u^*_{1pc} v_{1pd} + u^*_{2pc} v_{2pd}) ,\\ \Delta_{p\bar{n}_{\alpha}} &= \Delta_{\alpha p\bar{\alpha} n} = -\sum_{J,c,d} g_{np} F^{J0}_{\alpha a\bar{\alpha} a} F^{J0}_{\gamma c\bar{\delta} c} [G(aacd, J, T = 1) Re(u^*_{1n_c} v_{1pd} + u^*_{2n_c} v_{2pd}) \\ &+ i G(aacd, J, T = 0) Im(u^*_{1n_c} v_{1pd} + u^*_{2n_c} v_{2pd})] , \end{split}$$

We do not include

 Δ_{np} and $\Delta_{\overline{np}}$ explicitly, but include implicitly multiplying a factor 2 on the T=0 pairing matrix

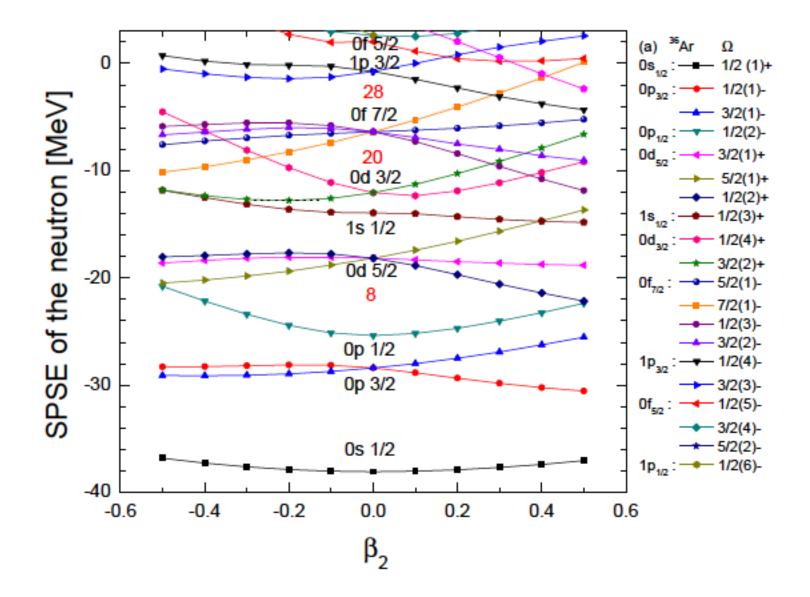
4 point formulas for empirical gaps

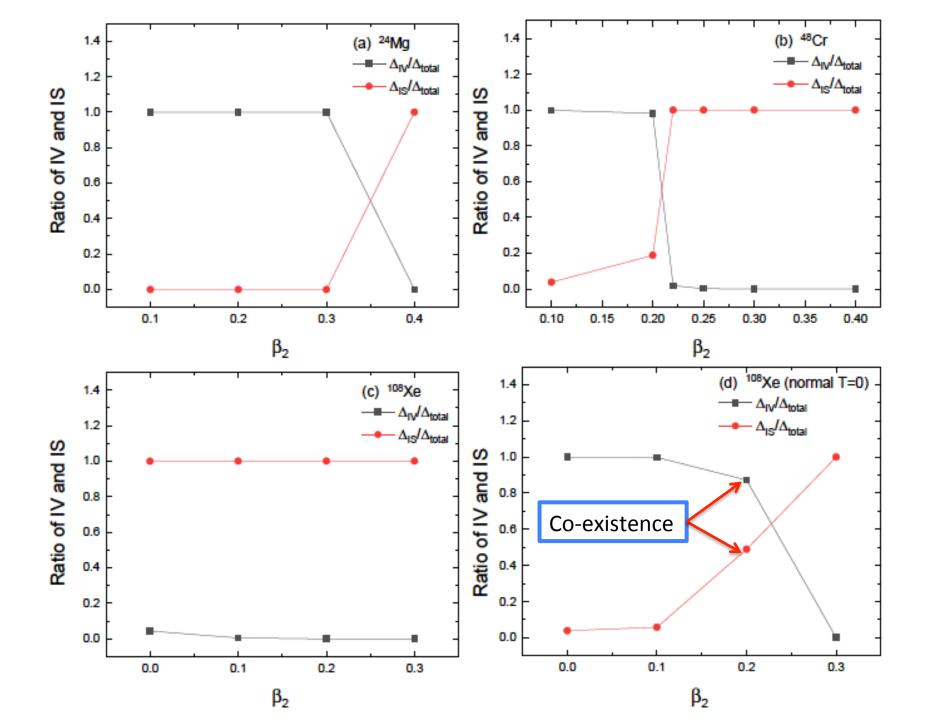
$$\Delta_p^{\text{emp}} = \frac{1}{8} [M(Z+2,N) - 4M(Z+1,N) + 6M(Z,N) - 4M(Z-1,N) + M(Z-2,N)],$$
(14)

$$\Delta_n^{\text{emp}} = \frac{1}{8} [M(Z, N+2) - 4M(Z, N+1) + 6M(Z, N) - 4M(Z, N-1) + M(Z, N-2)].$$
(15)

Nucleus	$ \beta_2^{E2} ~[29]$	$\beta_2^{\rm RMF}~[30]$	β_2^{FRDM} [31]	$\beta_2^{ m Ours}$	$\Delta_p^{\rm emp}$	$\Delta_n^{\rm emp}$	$\delta_{np}^{ ext{emp}}$
^{24}Mg	0.605	0.416	0.	0.300	3.123	3.193	1.844
$^{36}\mathrm{Ar}$	0.256	-0.207	-0.255	-0.200	2.265	2.311	1.373
$^{48}\mathrm{Cr}$	0.337	0.225	0.226	0.200	2.128	2.138	1.442
$^{64}\mathrm{Ge}$	_	0.217	0.207	0.100	1.807	2.141	1.435
$^{108}\mathrm{Xe}$	_	_	0.162	0.100	1.467	1.496	0.605
$^{128}\mathrm{Gd}$	_	0.350	0.341	0.100	1.415	1.393	0.592

Deformed Woods-Saxon potential for s.p. energies in ³⁶Ar





Gamow-Teller transitions from high-spin isomers in N = Z nuclei

H. Z. Liang(梁豪兆),^{1,2} H. Sagawa,^{1,3} M. Sasano,¹ T. Suzuki(鈴木俊夫),^{4,5} and M. Honma³

Phys. Rev. C 98, 014311 (2018) - Published 9 July 2018

Ikeda Gamow-Teller sum rule

=> proton and neutron Fermi sphere

$$S_{-} - S_{+} \equiv \sum_{f,\nu} |\langle f | \hat{O}_{\nu}^{-} | i \rangle|^{2} - \sum_{f,\nu} |\langle f | \hat{O}_{\nu}^{+} | i \rangle|^{2} = 3(N - Z)$$

New sum rule for GT transitions from High Spin Isomers => spin-up and spin-down Fermi sphere

the intrinsic frame of deformed nuclei,

$$\hat{O}_{\nu}^{\pm} = \sum_{\alpha} \sigma_{\nu}(\alpha) t_{\pm}(\alpha) \,,$$

HSI: I=12⁺ in ⁵² Fe is most likely to be oblate deformation. Ex=6.96MeV $t_{1/2}$ =45.9s I=21⁺ in ⁹⁴Au Ex=6.67MeV $t_{1/2}$ =0.4s Combinations of spin-up and spin-down opeartors

$$\begin{split} \Delta S(t_{-}) &\equiv S(\sigma_{-1}t_{-}) - S(\sigma_{+1}t_{-}) \\ &= 2\sum_{\alpha} \langle i | \sigma_0(\alpha) t_+(\alpha) t_-(\alpha) | i \rangle \,, \\ \Delta S(t_+) &\equiv S(\sigma_{-1}t_+) - S(\sigma_{+1}t_+) \\ &= 2\sum_{\alpha} \langle i | \sigma_0(\alpha) t_-(\alpha) t_+(\alpha) | i \rangle \,. \end{split}$$

$$\Delta S(t_{-}) - \Delta S(t_{+}) = 4 \sum_{\alpha} \langle i | \sigma_{0}(\alpha) t_{z}(\alpha) | i \rangle$$

= 2(\langle S_{n} \rangle - \langle S_{p} \rangle),
$$\Delta S(t_{-}) + \Delta S(t_{+}) = 2 \sum_{\alpha} \langle i | \sigma_{0}(\alpha) | i \rangle$$

= 2(\langle S_{n} \rangle + \langle S_{p} \rangle),

Sum rule values depend on the spin expectation of protons ad neutrons. Notice |i> is High spin isomers.

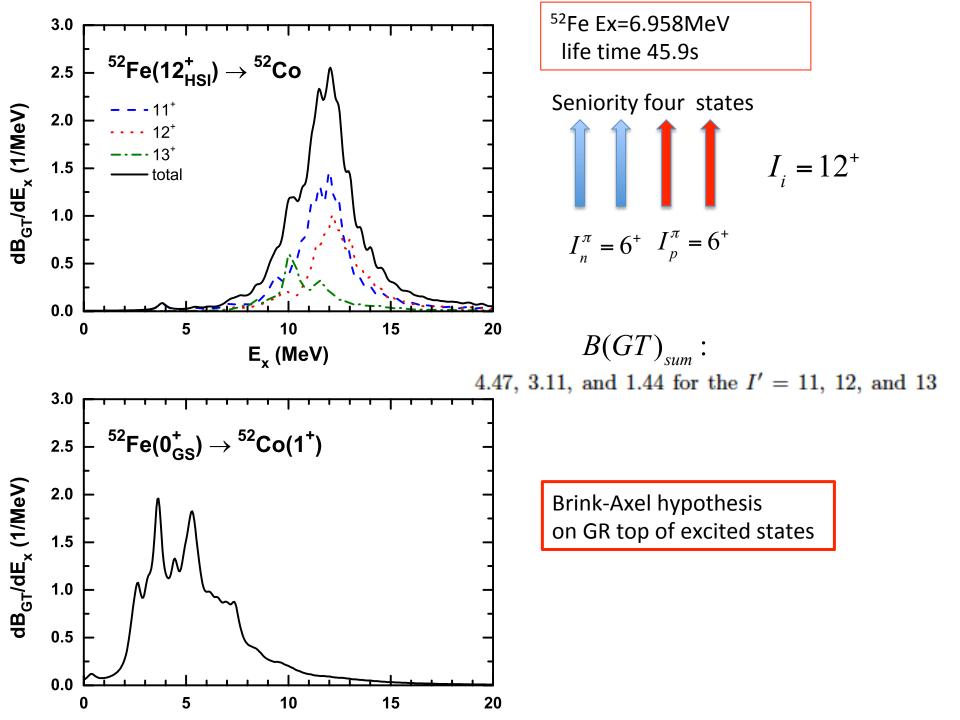
 $[Nn_3\Lambda\Omega] = [303\frac{7}{2}]_{\pi(\nu)}$ and $[312\frac{5}{2}]_{\pi(\nu)}$

Angular momentum projection in Laboratory frame

$$\Phi_{KIM} = \left(\frac{2I+1}{16\pi^2}\right)^{1/2} \times \left(\Psi_K(q)D^I_{MK}(\omega) + (-)^{I+K}\Psi_{\bar{K}}(q)D^I_{M-K}(\omega)\right)$$
$$\hat{O}_{\rm GT}(1\mu) = \sum_{\nu}\hat{O}_{\nu}D^1_{\mu\nu}(\omega).$$
$$\langle K'I'||\hat{O}_{\rm GT}||KI\rangle = (2I+1)^{1/2}\langle IK1\Delta K|I'K'\rangle\langle K'||\hat{O}||K\rangle$$

TABLE II. B_{GT} strengths for the transitions $I \rightarrow I'$ with the 4-qp configuration of protons and neurons $[Nn_3\Lambda\Omega] =$ $[N0N(\Lambda+1/2)]_{\nu(\pi)}$ and $[N1(N-1)(\Lambda+1/2)]_{\nu(\pi)}$. Sum values in the last line are evaluated with I = 12 and j = 7/2.

	I' = I - 1	I' = I	I' = I + 1
$\Delta K = -1$	$\frac{2(4j-1)(2I-1)}{j(2I+1)}$	$\frac{2(4j-1)}{j(I+1)}$	$\frac{2(4j-1)}{j(2I+1)(I+1)}$
$\Delta K = 0$		$\frac{4I}{I+1}$	$\frac{4}{I+1}$
$\Delta K = +1$	_	_	2
sum	6.83	4.26	0.90

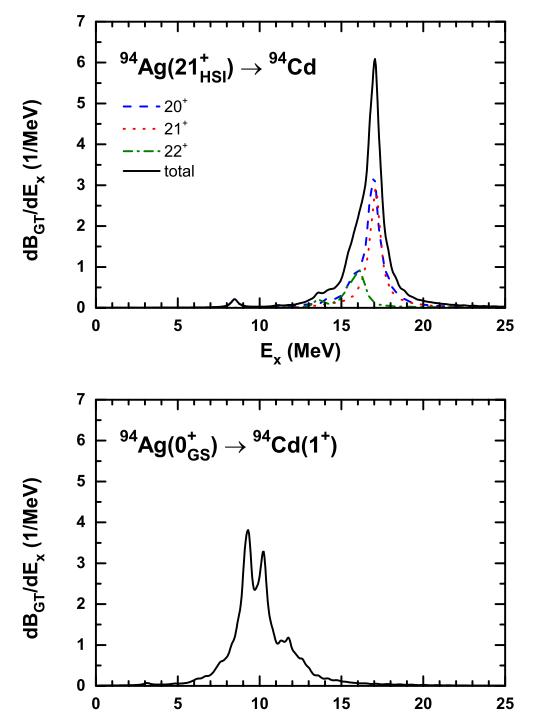


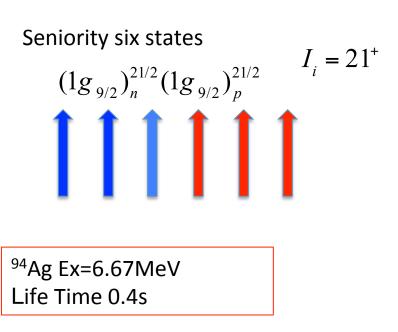
⁹⁴Ag

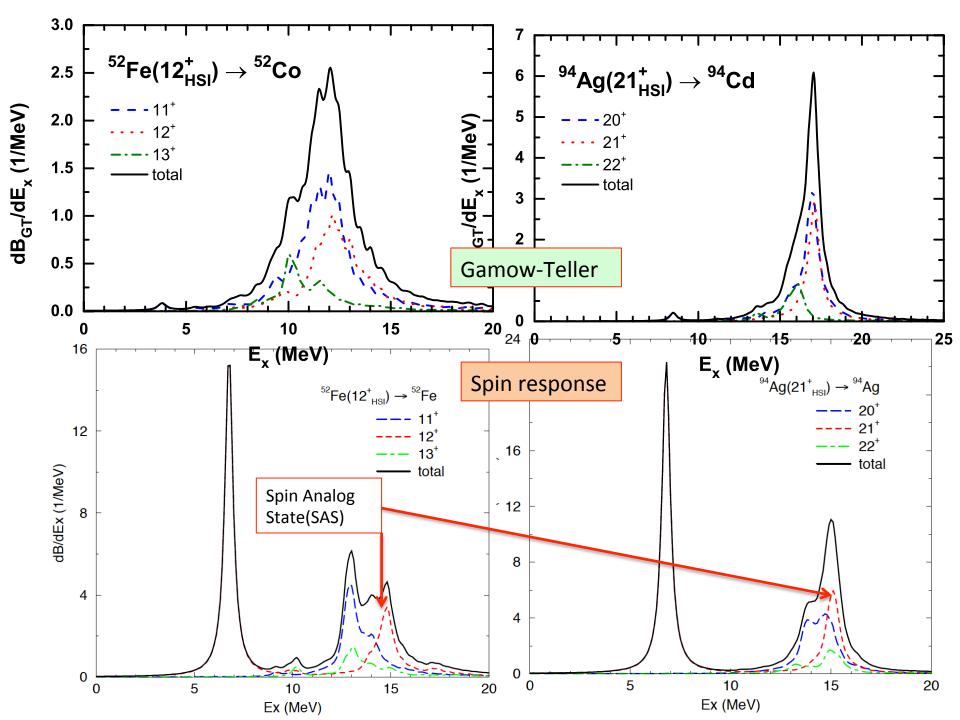
 $[Nn_{3}\Lambda\Omega] = [404\frac{9}{2}]_{\pi(\nu)}, \ [413\frac{7}{2}]_{\pi(\nu)}, \ \text{and} \ [422\frac{5}{2}]_{\pi(\nu)} \]$ $I_{n}^{\pi} = \frac{21}{2}^{+} \qquad I_{p}^{\pi} = \frac{21}{2}^{+} \qquad I_{i} = 21^{+}$

TABLE III. $B_{\rm GT}$ strengths for the transition $I \to I'$ with the 6-qp configuration of protons and neurons $[Nn_3\Lambda\Omega] =$ $[N0N(\Lambda + 1/2)]_{\nu(\pi)}, [N1(N-1)(\Lambda + 1/2)]_{\nu(\pi)}$, and $[N2(N-2)(\Lambda + 1/2)]_{\nu(\pi)}$. The sum values in the last line are evaluated with I = 21 and j = 9/2.

	I' = I - 1	I' = I	I' = I + 1
$\Delta K = -1$	$\frac{2(2I-1)}{2I+1} \frac{6j-3}{j}$	$\frac{2}{I+1}\frac{6j-3}{j}$	$\frac{2}{(2I+1)(I+1)} \frac{6j-3}{j}$
$\Delta K = 0$	_	$\frac{6I}{I+1}$	$\frac{6}{I+1}$
$\Delta K = +1$			<u>6</u> 1
sum	10.17	6.21	1.61







Summary: spin-isospin states in N=Z nucleus

- Cooperative role of T=0 and T=1 pairings induce (SU(4) symmetry restoration in spin-isospin space) =>large Gamow-Teller transitions of N=Z+2 nuclei at lower energy
- 2. HFB results: T=0 superfluidity may coexist with T=1 superfluidity. The deformation plays an important role to realize spin-triplet superfluid phase in the ground state: surface =>spin-singlet center => spin-triplet more theoretical study : Isospin projection and angular momentum projection
- 3. HIS-GT: new sum rule in the spin-up and spin-down Fermi sphere. (Ikeda GT sum rule: isospin-up and -down Fermi sphere. provide effective spin-spin residual and spin-isospin residual interactions in extreme spin polarized space.
- Fine fittings of energy density functions of spin and spin-isospin channels (which was done already for Shell model interactions: GPFX1J BY Toshio Suzuki, Michio Honma)

Recent progress(M1 transitions)

- For N=Z odd-odd nuclei, a strong competition between S=0 and S=1 pairing correlations is observed near the ground states.
- 2. How Spin-triplet superfluidity can be seen in nuclear many-body system: abrupt or smooth (crossover) transitions?
- 3. Large quenching in the IV spin response was observed which is consistent with magnetic moments and Gamow-Teller beta-decay matrix.
- 4. IS spin sum rule strength shows much smaller quenching than IV spin ones.
- 5. Strong spin-triplet pairing gives positive contribution to the spinspin neutron-proton correlations in N=Z nuclei.