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The cluster resonances have strong

impact on the stellar processes

(D The reaction rate becomes large in order
of magnitude, if the cluster resonances
locate in the Gamow window

(@ The final product of the reaction is
determined by the decay mode of
the cluster resonances
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O The IS monopole/dipole
transitions strongly populate
cluster resonances
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(a,a’) reaction (IS monopole/dipole transitions)
Is promising probe for the cluster resonances



Introduction: IS monopole/dipole responses

X. Chen et al.,PRC80, 014312 (2009). D. H. Young-Blood et al.,PRC65, 034302 (2002).
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Part2. IS monopole/dipole transitions

T. Yamada et al., PTP120, 1139 (2008)

Monopole transition populates O+ cluster resonances
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Part2. IS monopole/dipole transitions

Dipole transition populates 1 cluster resonances
Y. Chiba, M.K. and Y. Taniguchi, PRC93, 034319 (2016)
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Part2. IS monopole/dipole transitions

Dipole transition populates 1" cluster resonances
Y. Chiba, M.K. and Y. Taniguchi, PRC93, 034319 (2016)
Cluster estimate (analytical)
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Even if the ground state is an ideal shell model state,

the IS dipole transition to the excited cluster resonances

1 is as strong as single-particle estimate
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(harmonic oscillator)

Single-particle estimate

ML = 16%(1.2}11/3)3 ~ 8.4 fm® (for 2Ne)
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Introduction: IS monopole/dipole responses

X. Chen et al.,PRC80, 014312 (2009). D. H. Young-Blood et al.,PRC65, 034302 (2002).
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We can explain
why narrow resonances exist well below the Giant Resonances

© Giant resonance: Stronger than s.p. estimate, E > 15 MeV

© Cluster resonance: Comparable with s.p. estimate,
They appear at thresholds (E < 15 MeV)
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Model: Real-Time evolution method

A A A
@ Ham”tomaﬂ H = Z t(Z) — tcm + Z UGogny(ij) + Z UCOUlomb(ij)
i=1 i<j 1<J

(O Gogny D1S effective interaction

O Center-of-mass motion is exactly removed = No spurious modes

© Model wave function (time-dependent wave packets)

O Slater determinant of wave packets for nucleons

Canrn(t) = A{P(Z1(1)), ..., p(Za(t))}
B(Zi(t)) = exp {—(r — Z,(t))" M(t)(r — Z,(t))} (@ilt)xy + Gilt)x))

(O Dynamical variables of the model

Zz-(t) : Centroids of wave packets (positions and momentums)
M (t) : Size parameters of wave packets (3x3 matrix)
11 (t) Bi(t) : Spin directions



Model: Real-Time evolution method

© Equation of Motion

' — H|D
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O By solving EOM, we obtain time-dependent wf.

© The ensemble of the time-dependent wave functions
has beautiful nature

O It has ergodic property
O It follows quantum statistics (micro canonical ensemble)

J. Schnack and H. Feldmeier, NPA601, 181 (1996).

A. Ono and H. Horiuchi, PRC53, 845 (1996), PRChH3, 2341 (1996).
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Model: Real-Time evolution method

© This means that the superposition of the time-dependent
wave functions describes the quantum state very well

O All possible quantum states will appear after long-time propagation

O More important states appear more frequently,
if the excitation energy is properly chosen

Time dependent wave function must be a good basis
for the generator coordinate method (GCM)

i =/ dfz e Fic(©)B(Z1(2), .. Zn (D))

O The result should be converged after the long-time propagation
O The results should not depend on the initial condition



Model: Real-Time evolution method

© Benchmark calculations for 2C and ®He

R. Imai, T. Tada and M.K., arXiv:1802.03523

M.K. in preparation
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© A long time propagation brings us to the very accurate
description of quantum many—body system
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3.2 Result for %¢Si (o+2*Mg and ¢Be+?°Ne resonances)

Y. Taniguchi, Y. Kanada-En’yo and M.K. PRC80, 044316 (2009).
Y. Chiba, M.K., and Y. Taniguchi, PRC95, 044328 (2017)
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3.2 Result for #*Mg (*C+1C and a+?°Ne resonances)

H igh resolution data from RCNP(Osaka)

Strong peaks appear well blow the Giant resonance

T. Kawabata, Reported at the last Cluster conf. in 2012
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3.2 Result for #*Mg (*C+1°C and a+*°Ne resonances)

|S monopole/dipole transitions of Mg
strongly populate a+’°Ne/12C+*2C resonances

M.K, R. Yoshida and M. Isaka, PTP127, 287 (2012)
Y. Chiba, and M.K., PRC91, 061302(R) (2015)
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Resonance parameters

O* resonances

O A couple of resonances
in the Gamow window

O They have monopole
transition strenghts

O They have S-factors
in the C+C, a+Ne, p+Na
channels
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What we can describe and learn ?

O Partial cross sections for (p,p’) and (o,o’)

(p,p) reaction 65MeV (a,0) reaction 386MeV
H. Sakaguchi et al., S. Adachi et al,,
Prog.Part.Nucl.Phys. 97, 1 (2017) PRC97, 014601 (2018)
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© A realistic calculation by the real time evolution method showed
many resonances and their properties



Application to
PDR
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Introduction: 2°Ne Puzzle

PDR PN GDR ‘“

Excitation Energy

B(E1)

© Pygmy Dipole Resonances (PDR)
Low-lying E1 strength which locates well below the GDR
© Scientific Impact

O A new excitation mode in which the core and neutron-skin
oscillates in the opposite phase

K. Ikeda, INS Report JHP-7 (1988). T. Nomura, S. Kubono, INS Report JHP-7 (1988).

O PDR can have the strong impact on the r-process abundance

O PDR can be closely related to the neutron star matter properties

A. Carbone PRC 81, 041301(R) (2010).  S. Goriely, PLB436, 10 (1998).
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Introduction: 2°Ne Puzzle

© PDR of 26Ne have been studied in detail
© Reasonable agreement between theory and experiment

for the energy and strengths of PDR.

Theory: QRPAs Experiment@RIKEN
Energy: E,=6-10MeV Energy: E, =9 MeV
Strength: 5-10 % of TRK sum Strength: 5 % of TRK sum
K. Yoshida et al., PRC78, 014305 (2008). J. Gibelin et al., PRL101, 212503 (2008)
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Introduction: 2°Ne Puzzle

© Unexpected decay pattern was observed

Theory: QRPAs Experiment: RIKEN

Leading configurations of PDR PDR decays to °Ne*
25
V(1)1 (P30)t and V(s ) H(py o)t not to “Ne(g.s.)

26Ne(N=16) 25Ne(N=15) PDR

© 26Ne Puzzle
(O Energy and strength are reasonably described by QRPA

O Unexpected decay pattern of PDR

© Decay to 2°Ne* implies the core excitation of PDR

= “Real-time evolution method” has been applied

J
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Results: E1 strengths
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© PDR strength and energy are consistent with exp.

and also consistent with QPRAs




Results: Structure of PDR
© S-factors of PDR PDR
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© Not only the energy & strength, but also the structure
(core excitation) looks consistent with exp.

© Everything look fine,
but why the core is excited in the PDR?




Discussion: Isoscalar component of PDR

Question : Why PDR is dominated by the core excitation ?

(D PDR is dominated by neutron excitation
= It is not an eigenmode of isospin, but an admixture of IV and IS

PDR) ~ M(E1) |g.s.) + M(IS1) |g.s.)

Isovector Isoscalar

(@ Isoscalar component induces strong core excitation

(A-1)(A-2)

M(IS1) = Z""?Yl,U('Fi) = Z mi‘sylu(j}i) - A2 RSYM(R)
() 1€core
=/ \ 40 [/ \

© If this conjecture is true,

O PDR should have IS dipole strength
O Ne isotopes in the Island of Inversion should have
large core excited components

26
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Discussion: Isoscalar component of PDR

(D PDR is admixture of IV and is components
IPDR) ~ M(E1)|g.s.) + M(151)]g.s.)

= PDR should have strong IS dipole strengths
as well as |V strengths
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Discussion: Isoscalar component of PDR

@ IS component induces quadrupole core excitation

M(IS1) ~ Wﬁ K S a2V

recore
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L

= The isoscalar component should be enhanced

in the Island of Inversion
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© IS dipole strength is correlated the quadrupole collectivity

Discussion: Isoscalar component of PDR
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- Coupling of dipole and octupole modes in neutron-rich deformed nuclei,

%
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K. Yoshida, PRC80, 044324 (2009)
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Summary

O (a,’) reaction is a promising probe for the cluster resonances

© An analytical estimate of the transition matrix showed that
IS monopole/dipole transitions populates cluster resonances

© A realistic calculation by the real time evolution method showed
many resonances and their properties

© More detailed analysis will pin down the resonance parameters

O PDR; its IS component and core excitation

© Unique decay pattern of 26Ne PDR has been discussed

© The importance of the IS dipole mode has been emphasized
- Importance of pn interaction, .Hamamoto and H.Sagawa, PRC96, 064312 (2017).

© Enhancement in neutron-rich Ne isotopes was numerically
confirmed



