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Background

I Natural radionuclide: 40K, 238U and 232Th series are present in earth crust, building materials, air, water, food and the
human body

I These nuclides are usually measured by gamma spectrometry [1]

I 40K has a single gamma-ray peak

I 232Th and 238U are unstable and decay by producing nuclides (daughters) which are also unstable (fig. 1 & fig. 3) [2]

Figure 1: 232Th decay series (from

Gilmore [1])

Figure 2: Decay scheme of 208Tl (from

ENSDF )

Figure 3: 238U decay series (from

Gilmore [1])

Figure 4: Decay scheme of 214Bi (from

ENSDF)

Motivation

I Measurements of natural radioactivity concentration using gamma - gamma coincidence method has advantage of
minimizing spectrum background over single measurement [3]

I Detection limits can be improved by eliminating the internal activity in LaBr3:Ce scintillator through gamma - gamma
coincidence condition [4]

Detectors setup and Method

Figure 5: Experimental geometry

I An array of four LaBr3:Ce (2”
by 2”) detectors connected to a
Digital Signal Processing
system (XIA PIXIE) were used
for measurement of natural
occuring radioactive materials
(NORM) as shown in fig. 5

I Detector to sample distance
was 10 cm

I Thorium (Th) ore and Uranium
(U) ore from IAEA in 1L
Marinelli beakers were each
measured for 48 hours

I Background measurements was
also taken using empty Marinelli
beaker

Analysis

I For singles background spectrum was subtracted from both Th and U spectra

I Gamma - gamma coincident spectra were generated by setting software time gates tb1, tb2 & tf (fig. 6) offline

I The gamma-gamma of time tb1 + tb2 (fig. 8) which is compton continuum background was normalized to the time tf
and subtracted from the gamma-gamma of time tf (fig. 7) to obtain fig. 10 for Th and the same was done for U to
obtain fig. 12

I 208Tl peaks (fig. 2) was used for 232Th and 214Bi (fig. 4) for 238U

I Energy gates were set on γ − γ matrices associated with the 208Tl (583 keV and 2614 keV) (fig. 10) and 214Bi (609
keV and 1120 keV) (fig. 12) respectively.
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Figure 6: Time spectrum for thorium
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Gamma - gamma spectrum

Figure 7: Gamma-gamma for thorium

using time gate tf
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Gamma - gamma spectrum

Figure 8: Gamma-gamma for thorium

using time gate tb1 + tb2
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Gamma - gamma spectrum

Figure 9: Gamma-gamma for thorium

after subtraction of gamma-gamma of

time gate tb1 + tb2 from that of time

gate tf

Preliminary results
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Figure 10: Gamma-gamma coincidence for Thorium
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Figure 11: Single spectrum and Coincidence spectra (total projection, gated on 583 keV and 2614 keV) for Thorium
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Figure 12: Gamma-gamma coincidence for Uranium
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Figure 13: Single spectrum and Coincidence spectra (total projection, gated on 583 keV and 2614 keV) for Uranium

Conclusion and Outlook

I As seen in fig. 11 & 13 the compton continuum in the coincidence spectrum is less
compared to the single, thereby reducing the spectrum background

I Counts in each peak of interest will be extracted

I peak-to-total ratios will be calculated for both singles and coincidence

I Detection efficiency will be determined

I Activity concentration will be calculated for singles and coincidence using the formular
suggested by Kai [5]

I Lifetime of the levels will also be verified
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