From the nuclear equation of state straight to nuclear collective motion

> Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea

A rendering of the future RAON complex, under construction in Daejeon

Interests and motivation

Some parameters are quite well constrained (within approximately 10%)

- ρ₀, Ε₀
- Also rather well: K₀, J
- Others not so well ...
- L, K_{sym}, Q_{sym}, ... What I want to do:

Why is this not done?

A crisis of sorts

- Equation of state vs finite nuclei
 - Energy density functionals, EDFs (Skyrme, Gogny,...)
- ✤ However…
 - Only few of the hundreds of EDF models can simultaneously describe nuclear matter and finite nuclei

[M.Dutra et al., PRC85(2012)035201; P.D.Stevenson et al., AIP Conf. Proc. 1529, 262]

- Spurious correlations among parameters (e.g., K₀,m*)
- while binding energies and radii "prefer" different values for the effective mass [M.Bender et al., Rev. Mod. Phys. 75,121

leads to the existence of an exact energy density functional. In practice, however, this functional is extremely complicated and establishing a useful form is more of an art than a science. One

Not satisfactory!

[A.Bulgac et al., Phys. Rev. C 97,044313]

EDF scope either seriously misjudged or not fully exploited

New strategy to unify the modeling of nuclei and homogeneous matter

- KIDS functional
- Controlled and converging expansion of nuclear EDF
- Proof of principle
 - Fix equation of state; map it onto an equivalent Skyrme functional; apply it straight to nuclei without changing it at all; m* doesn't matter

World first

- It works!
- First explorations of nuclear response
 - Polarizability of ⁶⁸Ni
 - "Fluffiness" of Sn isotopes

People

Chang Ho Hyun, Daegu University

Tae-Sun Park, Sungkyunkwan University

Yeunhwan Lim, IBS (now in Texas)

ibs

People

성균관대학교 SUNGKYUN KWAN UNIVERSITY

Chang Ho Hyun, Daegu University

- Tae-Sun Park, Sungkyunkwan University
- Yeunhwan Lim, IBS (now in Texas)
 - Korea
 - IBS (that's me and YHL)
 - Daegu
 - Sungkyunkwan

People

✤ <u>Chang Ho Hyun</u>, **D**aegu University

- * Tae-Sun Park, Sungkyunkwan University
- Yeunhwan Lim, IBS (now in Texas)
 - Korea
 - IBS (that's me and YHL)
 - Daegu
 - Sungkyunkwan
- Hana Gil, Kyungpook National University
- Yongseok Oh, Kyungpook National University
- Gilho Ahn, University of Athens, Greece

NUCLEAR ENERGY DENSITY FUNCTIONAL FOR KIDS

- Natural Ansatz for energy density inspired by QMBT / EFT
- Convenient Skyrme formalism for nuclei

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

- If I have SNM and PNM, namely c_i(0) and c_i(1) (plus the quadratic approximation) I obtain analytically: {ρ₀,E₀,K₀,Q₀},{J,L,K_{sym},Q_{sym}}
- And vice versa; or I can fit to SNM/PNM pseudodata
- First, a few words on:
 - Motivation for Ansatz
 - Why 4 terms? Why low order?

for details: PP,Park,Lim,Hyun,Phys. Rev. C 97,014312 (2018)

RAON

Fetter and Walecka, "Quantum theory of many-particle systems"

- Realistic potential: strong repulsive core plus attraction at longer range
- Apply Brueckner methodology in the calculation of nuclear matter energy
- → Result: k_F^2 , k_F^3 , k_F^4 , k_F^5 , k_F^6 , ..., converging
 - Even powers: from repulsive part
 - Odd powers: from both
- →The Fermi momentum is the relevant variable : powers of p^{1/3}

Saturation density is low...

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

- with respect to (effective) boson exchange range (?)
 - one-pion exchange: vanishing expectation value
 - next boson: rho with m_o~775MeV~4fm⁻¹
- Effective Lagrangian in powers of k_F/m_p
- Expansion of E/A in powers of k_F
 - > ... which means, again, powers of $\rho^{1/3}$
 - > The Fermi momentum as the relevant variable
 - k_F³ and k_F⁴ (i.e., coupling~p^{1/3}) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- Dilute Fermi gas: plus logarithmic terms

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- Fit to homogeneous matter pseudodata
 - Variational Monte Carlo (APR, FP)
- Statistical analysis of fit quality; naturalness
- Keep only the important terms! No overtraining

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

SNM: 3 terms suffice in converging hierarchy (c₃(0)=0)
PNM: 4 terms necessary (*different preferences*)

Nuclear energy density functional for KIDS

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Rare Isotope Science Preject

PP,Park,Lim,Hyun,Phys. Rev. C 97,014312

Natural Ansatz for potential energy: powers of $k_F \sim \rho^{1/3}$ But how many powers? Which are relevant?

- Fit to homogeneous matter pseudodata
 - Variational Monte Carlo (APR, FP)
- Statistical analysis of fit quality; naturalness
- Keep only the important terms! No overtraining

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3}$$

□ SNM: 3 terms suffice in converging hierarchy ($c_3(0)=0$)

PNM: 4 terms necessary (*different preferences*)

Symmetric nuclear matter:

- Set ρ₀=0.16 fm -3, E₀=-16MeV, K₀ = 240 MeV
- Determine c_{0,1,2}(0) (analytical expressions)
- Leads to Q₀=-373 MeV
- Pure neutron matter:
 - Fit c_{0,1,2,3}(1) to the APR pseudodata for PNM
 - Resulting symmetry-energy parameters:

J=33MeV, L=49MeV, K_{sym} =-157MeV, Q_{sym} =586MeV

Interpolations and extrapolations

Calculations with chiral interactions reproduced, although they were not used for fitting

Comparisons with other models

Comparisons with other models

PROOF OF PRINCIPLE: APR TAKEN TO NUCLEI

- Mapping to equivalent Skyrme functionals
- Nuclear structure
- Nuclear response (first results / preliminary)

Skyrme parameters by reverse engineering

$$v_{i,j} = (t_0 + y_0 P_{\sigma})\delta(r_{ij}) + \frac{1}{2}(t_1 + y_1 P_{\sigma})[\delta(r_{ij})k^2 + \text{h.c.}] + (t_2 + y_2 P_{\sigma})k' \cdot \delta(r_{ij})k + iW_0 k' \times \delta(r_{ij}) k \cdot (\sigma_i - \sigma_j) + \frac{1}{6}\sum_{n=1}^{3} (t_{3n} + y_{3n} P_{\sigma})\rho^{n/3}\delta(r_{ij}), \qquad (3)$$

$$\begin{split} t_0 &= \frac{8}{3} c_0(0) \,, \quad y_0 = \frac{8}{3} c_0(0) - 4 c_0(1) \,, \\ t_{3n} &= 16 c_n(0) \,, \quad y_{3n} = 16 c_n(0) - 24 c_n(1) \,, \quad (n \neq 2) \\ t_{32} &= 16 c_2(0) - \frac{3}{5} \left(\frac{3}{2} \pi^2\right)^{2/3} \theta_s \,, \\ y_{32} &= 16 c_2(0) - 24 c_2(1) + \frac{3}{5} (3\pi^2)^{2/3} \left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right) \\ \text{with} \end{split}$$

$$\begin{array}{c} \theta_s \equiv 3t_1 + 5t_2 + 4y_2 \,, \quad \theta_\mu \equiv t_1 + 3t_2 - y_1 + 3y_2 \,. \end{array}$$

unconstrained from homogenous matter \rightarrow vary freely But the total $c_2(0)$, $c_2(1)$ will remain unchanged!

- For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)
- Chose effective masses (agnostic vary at will)
- All t_i , y_i are now known except t_1 , t_2 , x_1 , x_2
- ***** The two combinations θ_s, θ_μ also known (eff. masses)

Two independent free parameters plus spin-orbit W₀

- Fit only to ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Only bulk properties: E/A, charge radius: 6 data

- For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)
- Chose effective masses (agnostic vary at will)
- All t_i , y_i are now known except t_1 , t_2 , x_1 , x_2
- ***** The two combinations θ_s, θ_μ also known (eff. masses)

Two independent free parameters plus spin-orbit W₀

- Fit only to ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Only bulk properties: E/A, charge radius: 6 data

Let's begin with the baseline KIDS-ad2 set:

Empirical saturation point + APR for neutron matter

Binding energy, charge radii

Gil, PP, Hyun, Park, Oh, arXiv: 1805.11321

Some numbers

Model	t_0	t_1	t_2	t_{31}	t_{32}	t_{33}	(a_1,a_2,a_3)	W_0	$D_E[\%]^{-60}$	a: E/A [MeV]
	y_0	y_1	y_2	y_{31}	y_{32}	y_{33}			$D_R[\%]$	R_c [fm]
KIDS0	-1772.04	275.72	-161.50	12216.73	571.08	0.00	(1/3, 2/3, 1)	108.35	0.32	7.6561
	-127.52	0.000	0.000	-11969.99	29485.52	-22955.28			0.56	3.6465
K240,1.0,0.82	-1772.04	270.52	-355.95	12216.73	642.12	0.00	(1/3, 2/3, 1)	97.61	0.41	7.6993
	-127.52	235.79	374.20	-11969.99	29224.07	-22955.28			0.56	3.6416
K240,0.7,0.82	-1772.04	448.99	-279.45	12216.73	-2572.65	0.00	(1/3, 2/3, 1)	135.24	0.26	7.6464
	-127.52	-345.72	234.74	-11969.99	41318.69	-22955.28			0.44	3.6494
K240,0.9,1.00	-1772.04	315.97	-527.58	12216.73	-191.34	0.00	(1/3, 2/3, 1)	107.58	0.38	7.6933
	-127.52	-56.87	480.10	-11969.99	36289.12	-22955.28			0.57	3.6370
K220,1.0,0.82	-1938.71	281.04	-479.05	15900.76	-2750.91	0.00	(1/3, 2/3, 1)	88.96	0.52	7.7701
	-294.19	236.07	388.03	-8285.96	25831.04	-22955.28			0.94	3.6524
K220,0.7,0.82	-1938.71	466.23	-439.68	15900.76	-5 <mark>965.68</mark>	0.00	(1/3, 2/3, 1)	133.36	0.44	7.6807
	-294.19	-247.10	422.10	-8285.96	37 925.67	-OA5par	with		0.82	3.6663
GSkI [32]	-1855.45	397.23	264.63	13858.00	-2694.06	ncfi <mark>ðið</mark> sls	(f/#2/8+1)	169.57	0.20	7.6294
	-219.02	-698.59	-478.13	1747.29	32 00.69	146.94	loon doto		0.68	3.6640
SLy4 [37]	-2488.91	486.82	-546.39	13777.00	m	any nuc		122.69	0.38	7.7030
	-2075.75	-167.37	546.39	18652.68					0.91	3.6734

 $D_O = \frac{1}{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{nucl}}} \left| \frac{O_i^{\text{expt}} - O_i^{\text{cal}}}{O_i^{\text{expt}}} \right|$

Gil, PP, Hyun, Park, Oh, arXiv:1805.11321

Neutron skin thickness

Gil, PP, Hyun, Park, Oh, arXiv:1805.11321

KIDS-ad2: Predictions for ⁶⁸Ni (not fitted)

^[*] for m*/m=1.0~0.7:8.68794; 8.68176; 8.68838; 8.68912 MeV ^[**] a_D measurementT.Aumann and D.Rossi, private communication

CAON

Compression mode and the effective mass

CAON

16S 기초과학연구원 Institute for Basic Science

RAON

Symmetric nuclear matter:

- { ρ_0 , E₀, K₀} \rightarrow 3x3 system \rightarrow { $c_i(0)$; i=0,1,2; c₃(0)=0}
- Feasible but unnecessary:
- ∘ { ρ_0 , E_0 , $K_{0,}$ Q_0 } →4x4 system → { $c_i(0)$; i=0,1,2,3}
- Symmetry energy:
 - {J, L, K_{sym}, Q_{sym}} → 4x4 system → {[c_i(1)-c_i(0)]; i=0,1,2,3

Let us keep SNM, J, L, K_{sym} steady and equal to the KIDS-ad2 values; vary Q_{sym} ; and solve for $c_i(1)$

Exploring symmetry energy parameters

Dilute neutron matter

~RAON

Exploring symmetry energy parameters

To conclude...

The versatile KIDS functional

- A converged expansion of the nuclear EoS/EDF in terms of the Fermi momentum
- Reverse-engineer a Skyrme functional for applications in nuclei
 - Bulk and static properties are found independent of the effective mass!
 - We can vary the bulk EoS and m* independently
- Effective mass and ...
 - Polarizability of ⁶⁸Ni (static)
 - "Fluffiness" of Sn isotopes
- … many other explorations to come

preliminary / in progress

Single-particle levels

