S. Pirrie ${ }^{1}$, Tz. Kokalova ${ }^{1}$, C. Wheldon ${ }^{1}$, J. Bishop ${ }^{1}$, R. Hertenberger ${ }^{2}$, H.-F. Wirth ${ }^{2}$, S. Bailey ${ }^{1}$, N. Curtis ${ }^{1}$, D. Dell'Aquila ${ }^{5}$, Th. Faestermann ${ }^{3}$, D. Mengoni ${ }^{4}$, R. Smith ${ }^{1}$, D. Torresi ${ }^{1}$, A. Turner ${ }^{1}$ 1. School of Physics and Astronomy, University of Birmingham, B15 2 TT
2. Fakultäat für Physik, Ludwig-Maximillans-Universität München, D-85748 Garching, Germany
3. Physik Department, Techinische Universititat München, D-85748 Garching, Germany
4. Università degli Studi di Padova, Via 8 Febbraio $1848,2,35122$ Padova PD, Italy
5. Universita degli Studi di Napoli Fedorico II, Corso Umberto $1,40,80138$ Napoli NA, Italy

1. Aims and Motivations

Rotational bands with cluster structure in ${ }^{18} \mathrm{O}$ were proposed by von Oertzen et al. [1], based on the measurement of 30 previously unobserved states in an experiment performed using the Q3D magnetic spectrograph at the Maier-Leibnitz Laboratory in Munich.
These proposed rotational bands, $\mathrm{K}^{\pi}=\mathrm{O}_{2}$ and $\mathrm{K}^{\pi}=\mathrm{O}_{4}$, have both a negative and positive parity band associated with them due to signature splitting, caused by their asymmetry about the rotation axis.
The proposed structure of the $\mathrm{K}^{\pi}=\mathrm{O}_{2}^{+/-}$bands is a core $+\alpha$ structure of ${ }^{14} \mathrm{C} \otimes \alpha$.
The proposed structure of the $\mathrm{K}^{\pi}=\mathrm{O}_{4}^{+/-}$bands is a nuclear molecule structure of ${ }^{12} \mathrm{C} \otimes 2 \mathrm{n} \otimes \alpha$.
States with nuclear cluster structure provide an excellent test of nuclear models as well as an increased ease in modelling the nuclear system by reduction of its nucleons into clusters. Through the measurement of the branching ratios for these states through an experiment, the reduced partial widths can be determined for each decay mode.
The reduced partial α width can be compared with the Wigner limit to determine the tendency towards clustering, and thus confirm or refute the proposed bands.

Figure 1: The proposed rotational bands showing the signature splitting p) and the proposed cluster structures, listed with the energy
2. Experimental Set-up

total angular coverage (right) [2].
The experiment was performed, also at the Maier-Leibnitz Laboratory in Munich, making use of the Q3D magnetic spectrograph [3] in conjunction with the Birmingham DSSD array to measure charged particles.
The reaction that was used to produce ${ }^{18} \mathrm{O}$ in the desired excited states was ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right)^{18} \mathrm{O}^{*}$ The ${ }^{18} O^{*}$ or its corresponding decay fragments were detected by the DSSD array to allow for high resolution determination of both their energies and momenta.
The proton was detected by the Q3D, as the particle identification possible through the several stages of the focal plane detector contained within the Q3D allowed for events corresponding to other reactions to be rejected.

3. Efficiency Corrections

In order to accurately determine branching ratios, the geometric efficiency of the DSSD array for each decay mode must be considered.
Through the use of Monte Carlo simulations via Resolution8.1 [5], an inhouse simulation package at the University of Birmingham, these geometric efficiencies were determined by comparing events on each pixel of the detector to within 3 mm horizontally and vertically.
Through measurement of the efficiencies of bound states, the geometric efficiencies of the detectors can also be determined.

4. Particle Identification

- The focal plane detector of length 0.89 m consists of 2

 cathode foils, 2 anode wires placed parallel between the two foils and a scintillator detector [4].One cathode foil is segmented into 255 strips which allowed for a position measurement of incoming protons, proportional to their energy.
The other cathode foil and anode wires measured energy loss of the incident proton, while the scintillator measured its total energy, enabling $\mathrm{E}-\mathrm{AE}$ particle identification.

Scintillator energy (channels)
Focal plane position (channels) Figure 4: Examples of the focal plane detector particle identification using E- $\Delta \mathrm{E}$ (left) and using $\Delta \mathrm{E}$ against focal plane position (right). States in ${ }^{18} \mathrm{O}$ can be seen clearly.
 detected ${ }^{14} \mathrm{C}$, with the different loci labelled [2]. An example reaction is also shown (right).
As the DSSD array had no inherent particle identification, the nature of a detected particle was determined through Catania plots.
If ${ }^{18} \mathrm{O}$ decays into two massive particles (Figure 5), by assuming the mass of a detected particle (A), the momenta of the other decay fragment (B) can be determined through conservation of momentum.
By rearranging the \mathbf{Q}-value expression for this reaction, a relationship in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ can be obtained,

$$
E_{b e a m}-E_{P}-E_{A}=\frac{p_{B}^{2}}{2 m_{B}}-Q
$$

By plotting the left hand side of the equation against $p_{B}^{2} / 2$, a straight line locus formed with a gradient of $1 / m_{B}$ and a y-intercept of $-Q$. - As the mass of particle A had to be assumed, there were distinct loci associated with the incorrect assignment of mass, the nature of which were confirmed by Monte Carlo simulation.

5. Preliminary Results

Table 1: Preliminary branching ratio results obtained for states in the 7.5 MeV excitation region, including their fitted energies and FWHMs, as well as literature J^{π} values.					
Energy (keV)	$\begin{gathered} \text { FWHM } \\ (\mathrm{keV}) \end{gathered}$	$J_{\text {Lit }}$	α branching ratio	ү branching ratio	${ }^{1} n$ branching ratio
7114(1)	67.4(14)	4^{+}	0.27 (3)	0.73(3)	
7621(1)	76(8)	1	0.99(13)	0.01(13)	
7859(2)	62(2)	5	0.84(5)	0.16(5)	
7973(2)	78(4)	$3^{+} / 4$	0.04(5)	0.96(5)	-
8127(3)	45(3)	2^{+}	0.87(9)	0.13(9)	0.00(9)
8411(2)	114.2(12)	1	0.00(10)	0.20(10)	0.80(10)

- By gating on the different loci on the Catania plot, the contribution to each state from each decay mode was determined by fitting the corresponding Q3D spectrum (Figure 7).

References

Applying the geometric efficiency correction for each decay mode then gave their absolute branching ratio.

6. Further Work

Continue extracting branching ratios for all measured states.
Use the measured branching ratios to calculate the reduced partial α widths.
Compare the reduced partial α widths to the Wigner limit and establish the tendency towards α-clustering.

S. Pirrie et al., A method to de conference proceedings, 2018 .
M. Loner et al., Nucl. Instrum. Methods, 3:1-12, 1973.
N. Curtis et al., Phys. Rev. C, 51:1554-1557, 1995
6. S. Pirrie et al., Phys Rev. C, 2018, paper in preparation.

The authors would like to thank Andy Bergmaier for his help loaning equipment during
the set-up of the experiment, as well as the operators of the celerator at the Maier-Leibnitz Laboratory in Munich for providin
the ZLi beam. This work was funded by the UK Science and Technology Facilities Council (STFC) under Grant No. ST/L005751/1 and from the European Union's Horizon 2020 search and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 65F9744.

