6th International Conference on Collective Motion in Nuclei under Extreme Conditions (COMEX6) Contribution ID: 32 Type: Oral ## **Are the Molybdenums Fluffy Too?** "Why are the tin isotopes fluffy?" has remained, for nearly a decade, a fundamental open problem in nuclear structure physics: models which reproduce the isoscalar giant monopole resonance (ISGMR) in the "standard" doubly-closed shell nuclei, 90 Zr, 208 Pb, overestimate, by as much as 1 MeV, the ISGMR energies of the openshell tin and cadmium nuclei [1-4]. To further elucidate this question as also to examine *when* this "fluffiness" appears in moving away from the doubly-closed nucleus 90 Zr, and *how* this effect develops, we have carried out measurements of the isoscalar giant resonance strength distributions in a series of molybdenum nuclei. The measurements were performed for 94,96,97,98,100 Mo, using inelastic scattering of 100 MeV/u α particles at the Research Center for Nuclear Physics, Osaka University. The targets, with thicknesses ~ 5 mg/cm², were enriched to an isotopic purity of approximately 95%. The measurements on all nuclei were performed within the same experiment so as to minimize any systematic effects in the final results. The versatile, high-precision mass spectrometer, Grand Raiden, provided small angle $(0-10^\circ)$ spectra virtually free of all instrumental background. The resulting double-differential cross sections can be used to reliably extract ISGMR strength distributions using a multipole decomposition analysis; this procedure is currently in progress. The extracted ISGMR strengths will be presented. It is hoped that these results, in combination with previously published results for the ISGMR strength in 90,92 Zr and 92 Mo [5], will provide important information for possible refinements of theoretical models in describing this mode in open- and closed-shell nuclei alike. This work has been supported in part by the National Science Foundation (Grant Nos. PHY-1713857 and PHY-1419765), and by the Liu Institute for Asia and Asian Studies, University of Notre Dame. ## References: - [1] U. Garg, et al. Nucl. Phys. A, 788, 36. (2007) - [2] J. Piekarewicz, J. Phys. G: Nucl. Part. Phys, 37, 064038. (2010) - [3] L.G. Cao et al. Phys. Rev. C, 86, 054313. (2012) - [4] P. Vesely et al. Phys. Rev. C, 86, 024303. (2012) - [5] Y.K. Gupta et al. Phys. Lett. B, 760, 482. (2016) **Primary author:** Mr HOWARD, Kevin B. (University of Notre Dame) Co-authors: Prof. GARG, Umesh (University of Notre Dame); Mr YANG, Yilong (University of Notre Dame); Dr SENYIGIT, Menekse (Ankara University); Prof. ITOH, Masatoshi (Tohoku University); Prof. OTA, Shinsuke (Center for Nuclear Study, University of Tokyo); Prof. AKIMUNE, Hidetoshi (Konan University); Prof. FUJIWARA, Mamoru (Osaka University); Prof. KAWABATA, Takahiro (Osaka University); Prof. HARAKEH, Muhsin N. (KVI-CART, University of Groningen); Dr MATSUDA, Yohei (Tohoku University); Mr FURUNO, Tatsuya (Kyoto University); TSUMURA, Miho (Kyoto University); Mr MURATA, Motoki (Kyoto University); Ms SAKAUE, Akane (Kyoto University); Mr INABA, Kento (Kyoto University); Mr KARASUDANI, Kouhei (Tohoku University); Mr KOHDA, Asahi (Osaka University); Mr NAKAMURA, Shoken (Osaka University); Mr OKAMOTO, Jun (Tohoku University); Mr ISHIBASHI, Yoko (Tohoku University) **Presenter:** Mr HOWARD, Kevin B. (University of Notre Dame) Track Classification: Track A