

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Statistical properties of well-deformed Samarium isotopes

Kgashane Malatji, M. Wiedeking (iThemba LABS), S. Siem (Universitetet i Oslo), P. Papka (Stellenbosch University) *et al.*

This work is based on the research supported in part by the NRF South Africa Grant No. 92600 and the IAEA Grant No. 20454.

& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

science

6th International Conference on Collective Motion in Nuclei under Extreme Conditions (COMEX6), Cape Town, Oct 29-Nov 2, 2018

Overview

- Physics Motivation for ^{154,155}Sm
- Experimental Setup
- Nuclear Level Densities
- γ-ray Strength Functions
- Scissors Resonance
- Future Work

Motivation for ^{154,155}Sm

• Systematics of the evolution of nuclear structure effects from ¹⁴⁴Sm (β_2 =0.00) to ¹⁵⁴Sm (β_2 =0.27).

Motivation for ^{154,155}Sm

- Systematics of the evolution of nuclear structure effects from ¹⁴⁴Sm (β_2 =0.00) to ¹⁵⁴Sm (β_2 =0.27).
- As the nuclear shape changes, γ -ray strength functions (γ SF) are expected to be affected.
- In particular, resonances such as the Pygmy dipole (PDR), Scissors Resonance (SR) and Low-

Energy Enhancement (LEE) may reveal interesting features.

Electromagnetic dipole response in nuclei

Excitation Energy (MeV)

PHYSICAL REVIEW LETTERS

week ending 19 OCTOBER 2012

Observation of Large Scissors Resonance Strength in Actinides

M. Guttormsen,^{1,*} L. A. Bernstein,² A. Bürger,¹ A. Görgen,¹ F. Gunsing,³ T. W. Hagen,¹ A. C. Larsen,¹ T. Renstrøm,¹ S. Siem,¹ M. Wiedeking,⁴ and J. N. Wilson⁵ ¹Department of Physics, University of Oslo, N-0316 Oslo, Norway

²Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234, USA

PHYSICAL REVIEW C 93, 034303 (2016)

First observation of low-energy γ -ray enhancement in the rare-earth region

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Laboratory for Accelerator

Based Sciences

National Research

Foundation

Objectives

Measure Nuclear Level Density (NLD) and γ-ray Strength Function (γSF) below S_n in ^{154,155}Sm isotopes (Oslo Method).

- \blacktriangleright Extract the *B*(*M*1) of scissors resonance.
- Compare to other measurements and provide a near complete picture of systematics in Samarium isotopes (¹⁴⁴⁻¹⁵⁹Sm).

science

Experimental Setup Oslo Cyclotron Laboratory

https://www.mn.uio.no/fysikk/english/research/about/infrastructure/OCL/

Experimental Setup Oslo Cyclotron Laboratory

[1] M. Guttormsen et al., NIM Phys. Res. A 648, 168 (2011)

Particle-γ Coincidence Matrices

The Oslo Method

- Unfolding the continuum γ-ray spectra [1]
 > Unfolding iterative procedure
- 2. Extraction of primary γ-rays [2]> first-generation method
- 3. Simultaneous extraction of level density and strength function [3]

$$\lambda_{if} = \frac{2\pi}{\hbar} \left| M_{if} \right|^2 \cdot \rho(E_f)$$

Fermi's golden rule

 $P(E_i, E_{\gamma}) \propto \rho(E_f) . \mathcal{T}(E_{\gamma})$

Assumes Brink-Axel hypothesis

- 4. Normalization
- [1] M. Guttormsen et al., NIM Phys. Res. A 374, 371 (1996)
- [2] M. Guttormsen et al., NIM Phys. Res. A 255, 518 (1987)
- [3] A. Schiller et al., NIM Phys. Res. A 447, 498 (2000)
- [4] A. C. Larsen et al., Phys. Rev. C 83, 034 315 (2011)

Normalization of the Nuclear Level Density

¹⁵¹⁻¹⁵⁵Sm Nuclear Level Densities

& technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA K. Sønstevold Beckmann (^{152,153}Sm), MSc thesis, UiO, (2018) A. Simon et al., Phys. Rev. C 93, 034303 (2016)

Even-odd ^{153,155}Sm γ-ray strength functions

Even-odd ^{153,155}Sm vs. Even-even ^{152,154}Sm

152-155**S**1

Comparison with photoabsorption data

& technology

Nucl. Data Sheets 120, (2014) 272: Experimental Nuclear Reaction Data (EXFOR) Nucl. Data Sheets 110, (2009) 3107: Reference Input Parameter Library (RIPL-3) -available online at http://www-nds.iaea.org REPUBLIC OF SOUTH AFRICA

- 2.9 and 3.2 mg/cm² thick
 ^{152,154}Sm foil, 15 MeV beam
- OSCAR (30 LaBr₃:Ce
 Array+SiRi)
- ➢ ¹²C and ¹⁶O contamination

Very very ... preliminary!!

Future Work

- Finalize analysis and extraction of B(M1) values in ^{154,155}Sm
- Test difference spin distribution models
- Compare resonances in the γSF to those of ^{144,148,149,152,153Sm} [Oslo Group], ¹⁵⁴Sm(p,p') [RCNP],
 ¹⁵⁴Sm(α,α'γ) [K600, iThemba LABS]

- Analysis of 152,154 Sm(p,p' γ) experiment using OSCAR at OCL, which took place September 2018.
- Other measurements: NLD and γ SF of neutron rich ¹⁵⁶⁻¹⁵⁹Sm, scheduled 2019 at ANL (CARIBU)

Acknowledgements

Thank you all!!

