Evolution of the Electric Dipole Response in the Stable Sn Isotope Chain* Sergej Bassauer, Peter von Neumann-Cosel, Atsushi Tamii and the E422 collaboration Institut für Kernphysik, TU Darmstadt

*Supported by the DFG within SFB 1245

30 October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 1

Outline

- Motivation
- Experimental method
- Preliminary results
- ► The case of ¹²⁰Sn
- Summary and outlook

Electric Dipole Response in Nuclei

Oscillation of neutrons against protons

30 October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 3

Motivation: Electric Dipole Response What can be learned?

- Dipole polarisability
- Gamma strength function covering PDR and GDR
- Level densities in the GDR region

30 October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 4

Dipole Polarisability

Static dipole polarisability

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

Dipole Polarisability

Static dipole polarisability

$$\alpha_D = \frac{\hbar c}{2\pi^2 e^2} \sum \frac{\sigma_{abs}(E_x)}{E_x^2} = \frac{8\pi}{9} \sum \frac{B(E1)(E_x)}{E_x} \left[\text{fm}^3/\text{e}^2 \right]$$

- α_D is a measure of neutron skin
 - P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303
- PDR strength related to neutron skin
 - J. Piekarewicz, PRC 73 (2006) 044325

Why Tin Isotope Chain?

112Sn	113Sn	114Sn	115Sn	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	132Sn
STABLE	115.09 D	STABLE	27.03 H	STABLE	129.2 D	STABLE	39.7 S						
0.97%	6 100.00%	0.66%	0.34%	14.54%	7.68%	24.22%	8.59%	32.58%	8-: 100.00%	4.63%	8-: 100.00%	5.79%	8-: 100.00%

- Wide mass range with little change of the underlying structure
 Experiment: Data available in stable and unstable isotopes
 - NRF: ¹¹²Sn, ¹¹⁶Sn, ¹²⁰Sn, ¹²⁴Sn
 - Coulomb dissociation: ^{124–132}Sn
 - ► Alpha scattering: ¹²⁴Sn, ¹²⁸Sn, ¹³²Sn
 - Proton scattering: ¹²⁰Sn, ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn
- Theory: Many calculations for PDR available
 - N. Tsoneva et al., NPA 731 (2004); PRC 77 (2008)
 - N. Paar et al., PLB 606 (2005)
 - J. Piekarewicz, PRC 73 (2006)
 - S. Kamerdizhiev, S.F. Kovaloo, PAN 65 (2006)
 - J. Terasaki, J. Engel, PRC 74 (2006)
 - E. Litvinova et al., PLB 647 (2007); PRC 78 (2008)

30 October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 7

Experiment at RCNP: E422 campaign

- Reaction: (p,p')
- Beam energy: 295 MeV
- Resolution: ~ 30 keV
- Measured angles: 0°, 2.5°, 4.5°
- Main targets: ¹¹²Sn, ¹¹⁴Sn, ¹¹⁶Sn, ¹¹⁸Sn, ¹²²Sn, ¹²⁴Sn
- ▶ ¹²⁰Sn

A. Krumbholz *et al.*, Phys. Lett. **B** 744 (2015) T. Hashimoto *et al.*, Phys. Rev. **C** 92 (2015)

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 9

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 9

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 9

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 10

The Case of ¹²⁰Sn(p,p')

TECHNISCHE UNIVERSITÄT DARMSTADT

- ¹²⁰Sn(p,p') experiment conducted at RCNP, Japan
- DDCS converted to photoabsorption cross section using Virtual Photon Method
- E1 gamma strength function determined from photoabsorption cross section

The Case of ¹²⁰Sn(p,p')

- ¹²⁰Sn(p,p') experiment conducted at RCNP, Japan
- DDCS converted to photoabsorption cross section using Virtual Photon Method
- E1 gamma strength function determined from photoabsorption cross section
- M1 gamma strength function determined from M1 strength which was obtained using the unit cross section technique

J. Birkhan *et al.*, PRC 93 (2016) 041302

E1 and M1 Gamma Strength Functions

30 October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 12

Total Gamma Strength Function

Total Gamma Strength Function

Comparison with Isoscalar Probe

Level Densities of 1⁻ States

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 16

Comparison of the Total Level Density

³⁰ October 2018 | TU Darmstadt | Institut für Kernphysik | AG von Neumann-Cosel | COMEX 6 | Sergej Bassauer | 17

Summary and Outlook

Summary

- Preliminary results
 - Comparison of tin isotopes
- ► The case of ¹²⁰Sn
 - Gamma strength function
 - Level densities

Outlook

- Multipole Decomposition Analysis ongoing
- Extract electric dipole polarisability
- Determine GSF and NLD