Multi-messenger investigation of the Pygmy Dipole Resonance

D. Savran, V. Derya, S. Bagchi, J. Endres, M.N. Harakeh,
J. Isaak, N. Kalantar-Nayestanaki, E.G. Lanza, B. Löher,
A. Najafi, S. Pascu, S.G. Pickstone, N. Pietralla,
V.Yu. Ponomarev, C. Rigollet, C. Romig, M. Spieker,
A. Vitturi and A. Zilges

COMEX 6 - 2018 -

Dipole photoresponse of atomic nuclei

Pygmy Dipole Resonance – Some open questions

- General phenomenon (minimum number of nucleons)?
- Substructures within the E1 strength distribution (transition densities)?
- Correlation of PDR to basic properties of nuclei such as deformation?
- Decay properties of the PDR?

Experiments using multiple and complementary probes/approaches

D. S., T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70 (2013) 210

Experiments using complementary probes

Experiments using complementary probes

Structure of low-lying E1 strength

E. Litvinova et al., Phys. Rev. C **79** (2009) 054312

Use of complementary probe sensitive to different combination of transition densities to investigate (sub)structures

Multi-messenger investigation of the PDR in ¹⁴⁰Ce

Photon scattering:

 α scattering: (hadronic interaction)

proton scattering:

(hadronic interaction)

decay properties: (via (γ,γ'γ") reaction)

(fragmentation:

- dominant isovector excitation (for E1)
- interaction with whole nucleus (kR << 1)
- dominant isoscalar excitation
- interaction surface peaked
- isoscalar with some isovector excitation
- interaction surface peaked but less than α
- Coupling of PDR to low-lying states
- Connection to photon strength function
- Damping of the PDR)

Multi-messenger investigation of the PDR in ¹⁴⁰Ce

Proton and α scattering at KVI

Proton and α scattering at KVI

Photon vs α scattering: Splitting of the PDR

Experiment vs Theory: Connecting results

 \Rightarrow Identification of the PDR mode due to different responses

E. G. Lanza, A. Vitturi, E. Litvinova, D.S., Phys. Rev. C 89 (2014) 041601(R)

J. Endres *et al*., PRL **105** (2010) 212503

Deniz Savran | GSI - Helmholtzzentrum für Schwerionenforschung

"Inelastic" decay channels

- Sensitive to different aspects of the wave function (coupling to lowenergy phonons)
- Directly connected to photon strength functions (used in the statistical model)

New approach: γ - γ spectroscopy at HI γ S

<u>The γ^3 setup at HI γ S</u>

ε**≈**5%

Provides sufficient efficiency to perform γ - γ coincidence experiments using the monoenergetic intense photon beam at HI γ S

B. Löher et al., NIM A 723 (2013) 136

Gate on decay of low-lying state: unique tagging on final state

Average branching ratios

Combination of all results for ¹⁴⁰Ce

- Four different observables
- Quantitative comparison for each observable to calculations
- Good agreement on absolute scale between QPM and experiment
- Reliable description of transition densities within the QPM

Summary

