

Octupole excitation in super heavy nuclei and J=4 isomeric states in N=100 isotones described by the same QRPA approach

S. Péru CEA, DAM, DIF

The QRPA methods describe nuclear excited states for all multipoles and both parities whatever the intrinsic deformation of the ground state.

Quadrupole, octupole and higher multipolarities can be obtained even on top of spherical HFB calculations. But standard QRPA approaches don't describe rotational motion.

Main approximation:

Linear response, i.e. harmonic potential approximation

E δΕ/δq=0 δ²Ε/δq²>0

The present QRPA approach (ISAAC code) using matrix representation allows to provide excited state wave functions, excitation energies and transitions (probabilities and densities) from the GS for deformed nuclei with axial symmetry.

Cez

Another usual application: low energy spectroscopy for even-even nuclei

COMEX 2018

Other application: low energy spectroscopy for odd nuclei

Cez

First $K^{\pi} = 2^{-} (J^{\pi} = 3^{-})$ vibrational states in N=150 isotones

Nucleus	E _{Exp.} keV	E _{D1M} keV	B(E3) ^{Exp.} W.u.	B(E3) ^{D1M} W.u.	% π	% v
²⁴⁶ Cm	842	1030	10,6	10,2	28	72
²⁴⁸ Cf	593	920		11,0	34	66
²⁵⁰ Fm	881	1000		10,0	28	72
²⁵² No	930	1115		8,3	18	82

First $J^{\pi} = 5/2^+$ vibrational states in N=151 isotones

Nucleus	E _{Exp.} keV	E _{D1M} keV	B(E3) ^{Exp.} W.u.	B(E3) ^{D1M} W.u.	% π	% v
²⁴⁷ Cm	227	611	7.3(21)	9,8	15	85
²⁴⁹ Cf	145	534	10(4)	11,1	18	82
²⁵¹ Fm	200	590	18(6)	9,2	13	87
²⁵³ No	168	(1029)	13(8)			

QRPA $J^{\pi} = 5/2^+$ state is defined as a phonon $K^{\pi}=-2^-$ on the $K^{\pi}=-9/2^-$ ground state (blocking v9/2⁻ in HFB and in QRPA)

K. Rezynkina et al, Physical Review C 97, 054332 (2018)

\Rightarrow J = 4⁻ isomers in N=100 isotones are not K = 4 states

No calculated half-lives reproduce the experimental one!

How to fix it?

K-mixing with Coriolis effect and j± operators,

i.e. to calculate transitions between QRPA excited states, in order to fill a coupling matrix :

L. Gaudefroy, S. Péru, et al, PRC97,064317 (2018)

mixing	¹⁶⁰ Nd	¹⁶² Sm	¹⁶⁴ Gd	¹⁶⁶ Dy	¹⁶⁸ Er	¹⁷⁰ Yb	¹⁷² Hf
K=0	0,0000	0,0000	0,0005	0,0000	0,0002	0,0015	0,0026
K=1	0,0001	0,0001	0,0004	0,0022	0,0021	0,0011	0,0509
K=2	0,0171	0,0178	0,0236	0,0048	0,0069	0,0500	0,0086
K=3	0,0005	0,0005	0,0005	0,0324	0,0329	0,0108	0,0017
K=4	0,9998	0,9998	0,9997	0,9995	0,9994	0,9987	0,9987

T ½ ns	¹⁶⁰ Nd	¹⁶² Sm	¹⁶⁴ Gd	¹⁶⁶ Dy	¹⁶⁸ Er	¹⁷⁰ Yb	¹⁷² Hf	
Exp.	1670(210)	1780(70)	605(30)	?	109(7)	370(15)	~1	
QRPA	6970	11105	3980	285	365	260	1,5	
QRPA/Exp.	4,17	6,24	6,57	?	3,35	0,703	1,5	
Unitary factor for 3 orders of magnitude								

Main	¹⁶⁰ Nd	¹⁶² Sm	¹⁶⁴ Gd	¹⁶⁶ Dy	¹⁶⁸ Er	¹⁷⁰ Yb	¹⁷² Hf
mode of decay	E3	E3	E3, E1	E1	E1	E1, E3	E1

Ce2

To summarize

Qualitative description of octupole low-lying states in super-heavy nuclei, for even and for odd particle numbers.

K-mixing of QRPA states provides a good description of J=4 isomers in N=100 isotones

Perspectives:

Enlarge the QRPA description of spectroscopy for low energy transitions.

For example $2^+_2 \rightarrow 2+1$ et $4^+_1 \rightarrow 2^+_1$

