I. Strong pair correlation in the (core+4n) ¹⁸C and ²⁰O nuclei

II. Study of ²⁸F and location of island of inversion

O. Sorlin (GANIL), A. Revel (GANIL-LPC), M. Marques (LPC) et al.

COMEX 6- Cape Town, Nov 2, 2018

Pair correlations and Nuclear superfluidity

Pair correlations play essential role in atomic nuclei

- Oscillations in S_n values
- g.s. spin 0⁺ of even-even nuclei
- Moment of inertia << rigid value
- Enhanced pair transfer (see e.g. Cavallero)
- Cooling of Neutron Stars, glitches

Role of 4n correlations on nuclear superfluidity ?

Pairing scheme towards drip-line: from BCS to BEC ? (e.g. Hagino et al. PRL99 (2007))

Find a mechanism to suddenly promote pairs in the continuum Study of <u>core+xn</u>, haloes/ <u>drip line</u> nuclei, molecular states ...

Determine the fraction of direct and sequential decay -> pair correlation Determine the average distance r_{nn} between neutrons from studying complete kinematics

Experimental method to reveal nn correlations in ¹⁸C (¹⁴C+4n)

$$\xrightarrow{-1p}$$

(
$$\simeq$$
 400 MeV/u)

- High energy proton knock-out (p,2p)
 →Quasi-free reaction at GSI
- Deeply bound proton
 →Promote neutrons into the continuum
- Neutron correlations unaffected by proton knock-out ?
- Deduce correlations from subsequent decay patterns

Experimental method to reveal nn correlations in ²⁰O (¹⁶O+4n)

 $rac{-1 n}{(\simeq 400 \text{ MeV/u})}$

- High energy neutron knock-out (p,pn)
 →Quasi-free reaction
- Deeply bound neutron

 $\rightarrow \mathsf{Promote}$ neutrons into the continuum

- Neutron correlations likely affected by neutron knock-out
- Qualitative/quantitative differences between ^{20}O and ^{18}C isotones?

Fully inclusive study of fragment-n-n correlations at R³B / GSI

Decay energy in the 2n decays in ¹⁸C and ²⁰O

з_{2n}(а.u.

- ♦ Relatively large ϵ_{2n} efficiency of LAND
- ➢ Evolution of correlations with $E_d ≤ 14$ MeV (About same range of E_d for ¹⁸C & ²⁰O)
- Role of the reaction mechanism?

n-n correlation function in ¹⁸C and ²⁰O

Dalitz plots and n-n correlations in ¹⁸C and ²⁰O (core + 4n systems)

Conclusions

Same pattern of Dalitz plots independently of E_d in ¹⁸C and ²⁰O

E_d (MeV)	r_{nn}^{rms} (fm)	Seq. (%)	$\langle E_r \rangle \ ({\rm MeV})$	$\langle \Gamma_r \rangle$ (MeV)
0 - 3.7	$4.0^{+0.6}_{-0.3}$	31 ± 14	1.5 ± 0.3	$1.0^{+0.8}_{-0.3}$
3.7 - 5.3	4.5 ± 0.6	17 ± 9	$2.0^{+1.3}_{-0.3}$	1.5 ± 0.3
5.3 - 7.2	4.2 ± 0.4	12 ± 7	$1.5^{+0.8}_{-0.3}$	$1.5^{+0.3}_{-0.8}$
7.2 - 12	3.7 ± 0.1	18 ± 4	1.5 ± 0.3	1.5 ± 0.3

¹⁸C* very stongly correlated system : about 85% direct emission
 -> consequence of pair correlations and relatively short r_{nn} distance

 $q_{nn} \approx 0$ $m_{nn}^2 \approx 0$

²⁰O* displays weaker correlations: 50 % direct emission

18

-> the difference likely comes from the reaction mechanism leading to unpaired neutrons

Size of the neutron source corresponds to the mean distance between neutrons in A=20 nucleus

A. Revel et al., PRL 120 (2018)

Perpectives

Evolution of r_{nn}, C_{nn}, m²_{ij} in other systems (halo, quasi-molecular states, drip line nuclei)

Study 4n correlations with R3B/ NeuLAND

II. Study of ²⁸F and location of island of inversion
O. Sorlin (GANIL), A. Revel (GANIL-LPC), M. Marques (LPC) et al.

COMEX 6- Cape Town, Nov 2, 2018

Motivations for studying ²⁸F

Christian PRL 108 (2012) 30 Counts / 270 keV 28**F** 20 S_{2n} 10 0 0.5 1.5 2.5 0 2 Decay Energy (MeV) -USDA 1.5 USDB BEeup - BEth (MeV) 0.5 N=19 -0.5 101 -1 11 12 13 15 9 10 14 16 17 Z

²⁸F can be used to study pn interaction towards drip line
 Is ²⁸F lying inside or outside of the Island Of Inversion ?
 How do neutron correlations look like at the drip line ?

²⁸F Binding energy agrees with USDA, B predictions

-> out of island of inversion (*Christian PRL 108 (2012)*)

No L assignment of the states, Low statistics and poor energy resolution Drop of neutron efficiency above 1.5 MeV, No gamma detection -> Study of ²⁸F at RIKEN using ²⁹Ne(-1p) and ²⁹F(-1n) knockout reactions.

Study of ²⁸F using knockout reactions in LH target at SAMURAI/RIKEN

Spectrum of ²⁸F populated by the ²⁹Ne(-1p)²⁸F reaction

Neutron configurations from reactions and momentum distributions

Hints of 2n decay patterns of ²⁸F

Conclusions on ²⁸F study

Spectroscopy and decay of ²⁸F produced by (-1p) and (-1n) reactions.

²⁸F ground state likely has a negative parity state -> in the Island of inversion

²⁸F spectroscopy and decay modes will be compared to models including continuum

Neutron neutron correlations strongly depend on the states -> config of state at 1840 keV?

All these analysis / conclusions are preliminary yet.