Heavy flavour spectroscopy at LHCb (including exotic states)

Nicola Neri University and INFN Milano on behalf of the LHCb collaboration

> Kruger 2018 conference Kruger National Park, South Africa 3-7 December 2018

Outline

- Introduction
- LHCb experiment
- Recent results
 - Evidence for $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)K^+\pi^$ decays LHCb-PAPER-2018-034, <u>arXiv:1809.07416</u>
 - Observation of two new resonances in $\Lambda_b \pi^\pm$ systems LHCb-PAPER-2018-032, arXiv:1809.07752
 - Search for beautiful tetraquarks in $\Upsilon(1S)\mu^+\mu^-$ invariantmass spectrum LHCb-PAPER-2018-027, JHEP 10 (2018) 086
- Summary

Introduction

- Quantum chromodynamics (QCD) describes interactions of quarks and gluons. Accepted theory of strong interactions
- Quark and gluon composition of observed hadrons in experiments is very complex: "QCD dilemma"
- Understanding QCD (longdistance) is also very important for improving sensitivity in new physics searches, e.g. flavour physics, muon g-2

Rev. Mod. Phys. 90, 15003 (2018)

Quark Model

- A goal of QCD is to predict the spectrum of strongly-interacting particles
- Phenomenological models developed to overcome limitations of lattice QCD (LQCD) calculations
- Hadron spectroscopy provide important anchor points for both LQCD calculations and phenomenological models

Nonstandard ("exotic") hadrons

- Identify patterns in hadron spectroscopy beyond (qqq) baryons and (qq) mesons to help development of theoretical models
- Pentaquark baryons and tetraquark mesons already mentioned in original Gell-Mann, Zweig formulation of quark model (1964)
- Different models proposed for quark composition and binding mechanisms of "exotic" states

New "standard" hadrons at LHCb

- Discovery of five narrow excited Ω_c⁰ states
 Phys. Rev. Lett. 118, 182001 (2017)
- Discovery of doubly charmed baryon \(\mathbf{E}_{cc}^{++}\) Phys. Rev. Lett. 119, 112001 (2017)
 - Observed also in $\Xi_c^+\pi^+$ final state Phys. Rev. Lett. 121, 162002 (2018)

New "exotic" hadrons at LHCb

 New pentaquark candidates in J/Ψ p system

Phys. Rev. Lett. 115, 072001 (2015)

- New tetraquark candidates in J/Ψφ system
 - binding mechanism could involve tightly binding tetra quarks or D_s+D_s*- pairs

Phys. Rev. Lett. 118, 022003 (2017)

LHCb experiment

8

LHCb physics program

CKM and CP violation

Rare decays

Spectroscopy

Electroweak QCD, Exotica

lon, Fixedtarget sin2 β , γ , ϕ_s , $|V_{ub}/V_{cb}|$, CPV in B⁰, B_s⁰, D⁰, b-baryons... See D. Hills' talk

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}, b \rightarrow s\mu^{+}\mu^{-}, b \rightarrow se^{+}e^{-}, \Sigma^{+} \rightarrow p\mu^{+}\mu^{-}, \dots$ See K. Mueller's talk

Tetraquarks, Pentaquarks, Ξ_{cc}^{++} , Ω_{c}^{*} , Ξ_{b}^{-*} ,...

Z⁰, W⁺, top, Dark photons, Longlived particles,..

Heavy ions, p-Gas, nuclear effects,... See G. Graziani's talk

LHCb detector at CERN

LHCb data sample and plans

- Collected >9 fb⁻¹ in 2010-2018. Major detector upgrade during LS2 (Upgrade I- 2020). Aim at 50 fb⁻¹ before 2030
- Major detector upgrade during LS4 (Upgrade II 2030). Aim at >300 fb⁻¹ after 2030 -

See O. Steinkamp's talk

Recent results

Evidence for $\eta_c(1S)\pi^-$ resonance

Search for $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decays

- Important input for understanding nature of exotic hadrons, in particular of $Z_c(3900)$ state (J/ Ψ π system) discovered by BESIII
 - hadrocharmonium model $\Rightarrow \eta_c(1S)\pi^-$ resonant state m= 3800 MeV
 - − quarkonium hybrid model \Rightarrow η_c(1S)π[−] resonant state J^P=0⁺, 1[−], 2⁺ m= 4025, 3770, 4045 MeV
 - diquark model $\Rightarrow \eta_c(1S)\pi^-$ resonant state J^P=0+ and m<3770 MeV

2011-2016 data - 4.7 fb-1

- PID from RICH detectors is crucial for signal selection
- Reconstruct $\eta_c(1S) \rightarrow p\underline{p}$ decay mode
- Use $B^0 \rightarrow p\underline{p}K^+\pi^-$ decays as control sample and $B^0 \rightarrow J/\Psi K^+\pi^-$ (J/ $\Psi \rightarrow p\underline{p}$) as normalisation mode for BR measurement

Amplitude analysis of $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decays

- Study Dalitz plot of 3 pseudoscalar final state particles: m²(K⁻π⁺), m²(η_cπ⁻)
- η_c natural width Γ~32 MeV taken into account
- Isobar model to describe the decay amplitude: coherent sum of resonant K⁻π⁺ and non-resonant processes
- K⁻π⁺ S-wave with LASS model
- Exotic $Z_c \rightarrow \eta_c \pi$ contribution added to improve the fit to data

$K^-\pi^+$ resonant contributions

Resonance	Mass [MeV]	Width $[MeV]$	J^P	Model
$K^{*}(892)^{0}$	895.55 ± 0.20	47.3 ± 0.5	1-	RBW
$K^*(1410)^0$	1414 ± 15	232 ± 21	1-	RBW
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0^+	LASS
$K_2^*(1430)^0$	1432.4 ± 1.3	109 ± 5	2^{+}	RBW
$K^*(1680)^0$	1717 ± 27	322 ± 110	1-	RBW
$K_0^*(1950)^0$	1945 ± 22	201 ± 90	0^+	RBW

Model with only K- π + contributions

Model with K- π + and $\eta_c(1S)\pi$ + contributions

$B^0 \rightarrow \eta_c(1S)K^+\pi^-$ results

- BR measurement $\mathcal{B}(B^0 \to \eta_c K^+ \pi^-) = (5.73 \pm 0.24 \pm 0.13 \pm 0.66) \times 10^{-4}$
 - dominant error from external branching fractions
- Amplitude model results

Amplitude	Fit fraction (%)	Branching fraction (10^{-5})
$B^0 \to \eta_c K^*(892)^0$	$51.4 \pm 1.9 \ ^{+1.7}_{-4.8}$	$29.5 \pm 1.6 \pm 0.6 {+1.0 \atop -2.8} \pm 3.4$
$B^0 \to \eta_c K^* (1410)^0$	$2.1 \pm 1.1 \ ^{+1.1}_{-1.1}$	$1.20 \pm 0.63 \pm 0.02 \pm 0.63 \pm 0.14$
$B^0 \to \eta_c K^+ \pi^- (\mathrm{NR})$	$10.3 \pm 1.4 \ ^{+1.0}_{-1.2}$	$5.90 \pm 0.84 \pm 0.11 \ ^{+0.57}_{-0.69} \ \pm 0.68$
$B^0 \to \eta_c K_0^* (1430)^0$	$25.3 \pm 3.5 \begin{array}{c} +3.5 \\ -2.8 \end{array}$	$14.50 \pm 2.10 \pm 0.28 {\ +2.01 \ -1.60 \ } \pm 1.67$
$B^0 \to \eta_c K_2^* (1430)^0$	$4.1 \pm 1.5 \ ^{+1.0}_{-1.6}$	$2.35 \pm 0.87 \pm 0.05 \ ^{+0.57}_{-0.92} \ \pm 0.27$
$B^0 \to \eta_c K^* (1680)^0$	$2.2 \pm 2.0 \ ^{+1.5}_{-1.7}$	$1.26 \pm 1.15 \pm 0.02 \ ^{+0.86}_{-0.97} \ \pm 0.15$
$B^0 \to \eta_c K_0^* (1950)^0$	$3.8 \pm 1.8 \ ^{+1.4}_{-2.5}$	$2.18 \pm 1.04 \pm 0.04 \ ^{+0.80}_{-1.43} \ \pm 0.25$
$B^0 \to Z_c(4100)^- K^+$	$3.3 \pm 1.1 \ ^{+1.2}_{-1.1}$	$1.89 \pm 0.64 \pm 0.04 {}^{+0.69}_{-0.63} \pm 0.22$

Evidence of exotic Z_c+(4100) resonance (3.4σ including sys errors). Mass and width measured as:

 $m_{Z_c^-} = 4096 \pm 20 \, {}^{+18}_{-22} \, {\rm MeV}$

$$\Gamma_{Z_c^-} = 152 \pm 58 \, {}^{+60}_{-35} \, \mathrm{MeV}$$

Beautiful baryons

Observation of two resonances in $\Lambda_b \pi^\pm$ systems

- Use copious sample of $\Lambda_b \rightarrow \Lambda_c^+ \pi^-, \Lambda_c^+ \rightarrow p K^- \pi^+$
- A_b candidates within ±50
 MeV of mass peak are combined with a prompt pion
- Λ_bπ⁻ and Λ_bπ⁺
 combinations are then studied

LHCb-PAPER-2018-032, arXiv:1809.07752 accepted by PRL

2011-2012 data - 3.0 fb⁻¹

Observation of two resonances in $\Lambda_b\pi^\pm$ systems

- Fit the Q-value distributions
 Q=m(Λ_bπ[±])-m(Λ_b)-m(π[±])
- The Σ_b[±], Σ_b^{*±} signals are obvious
- Precise measurements of masses and widths

State	$Q_0 \; [\text{MeV}]$	$\Gamma \; [\text{MeV}]$	Yield
Σ_b^-	56.45 ± 0.14	5.33 ± 0.42	3270 ± 180
Σ_b^{*-}	75.54 ± 0.17	10.68 ± 0.60	7460 ± 300
Σ_b^+	51.36 ± 0.11	4.83 ± 0.31	3670 ± 160
Σ_b^{*+}	71.09 ± 0.14	9.34 ± 0.47	7350 ± 260

LHCD

Observation of two resonances in $\Lambda_b\pi^\pm$ systems

- Fit the Q-value distributions
 Q=m(Λ_bπ[±])-m(Λ_b)-m(π[±])
- The Σ_b[±], Σ_b^{*±} signals are obvious
- Precise measurements of masses and widths

Observation of two resonances in $\Lambda_b\pi^\pm$ systems

- Observation of two new states $\Sigma_b(6097)^-$ and $\Sigma_b(6097)^+$
- Local statistical significance of 12.7σ and 12.6σ
- Mass and widths measured as

Quantity	Value [MeV]
$m(\Sigma_b(6097)^-)$	$6098.0 \pm 1.7 \pm 0.5$
$m(\Sigma_b(6097)^+)$	$6095.8 \pm 1.7 \pm 0.4$
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm 4.2 \pm 0.9$
$\Gamma(\Sigma_b(6097)^+)$	$31.0 \pm 5.5 \pm 0.7$
/ \	

 In the heavy-quark limit, five Σ_b(1P) states are expected.
 New observed structures compatible with 1P excitations

INFN Nicola Neri

Search for beautiful tetraquarks

- Predictions for X(bbbb)
 tetraquark in the mass region
 [18.4-18.8] GeV below η_bη_b
 threshold
- ► Predicted cross-section X(b<u>b</u>b<u>b</u>)→ $2\mu^+2\mu^-$ of $\mathcal{O}(1 \text{ fb})$
- Search for X(bbbb) in the Y(1S)µ+µ- invariant mass distribution

2011-2017 data - 6.3 fb⁻¹

Distribution of m($\mu^+\mu^-$): clear Y(1S), Y(2S), Y(3S) signals

Analysis strategy

- Retain $\Upsilon(1S)$ candidates is 2.5 σ window for m(2 μ +2 μ -) fits
- X(b<u>b</u>b<u>b</u>) searched in the mass window [17.5-20] GeV
- Muon candidates with p∈[8,500]GeV, p_T>1GeV
- Y(1S)→ µ+µ- used as normalisation mode for crosssection measurement
- Typical X mass resolution in the range of [60-70] MeV. Scaling factor wrt Y(1S) mass resolution from simulated data

Upper limits on X(bbbb) production

- No significant excess in X mass range [17.5-20] GeV
- Limits on X production cross-section are statistically dominated

LHCb-PAPER-2018-027, JHEP 10 (2018) 086

Set upper limits on S:

 $S \equiv \sigma(pp \to X) \times \mathcal{B}(X \to \Upsilon(1S)\mu^+\mu^-) \times \mathcal{B}(\Upsilon(1S) \to \mu^+\mu^-)$

• Upper limits on X production cross-section $\mathcal{O}(10 \text{ fb})$

Summary

- LHCb keeps producing interesting results in heavy flavour spectroscopy, also discovering new exotic states
 - Evidence for new tetraquark candidate $Z_c^+(4100) \rightarrow \eta_c \pi^-$ in $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decays
 - Observation of two new resonances in $\Lambda_b \pi^\pm$ systems: $\Sigma_b(6097)^-$ and $\Sigma_b(6097)^+$ states
 - Upper limit on production cross-section for X(bbb) tetraquark set at Ø(10 fb)

Backup slides

LHCb Upgrade detector

Major detector upgrade during Long Shutdown 2 (LS2) in 2020

