CP violation in heavy-flavour hadrons at LHCb

Donal Hill on behalf of the LHCb collaboration Kruger 2018: Discovery Physics at the LHC

6 December 2018

What is CP?

CP violation

- Weak interaction does <u>not</u> respect *CP*
- Effect was first seen in kaons in 1964

• *CP* violation is one of the **Sakharov conditions** for early universe Baryogenesis - they ensure matter was left over to make stuff with!

Does CP violation fit into the Standard Model?

• CKM matrix

- Connects u- and d- type quarks via the weak force
- 3×3 matrix with four parameters one complex phase

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
only source of CPV in SM

• Mixing

 $\mathcal{P}(B^0\to\bar{B}^0)\neq\mathcal{P}(\bar{B}^0\to B^0)$

• Decay $\mathcal{P}(B \to f) \neq \mathcal{P}(\bar{B} \to \bar{f})$

• Interference

 $\mathcal{P}(B^0 \to \bar{B}^0 \to f) \neq \mathcal{P}(\bar{B}^0 \to B^0 \to \bar{f})$

Neutral B meson mixing

- Box diagram enables $B^0_{(s)} \leftrightarrow \bar{B}^0_{(s)}$ oscillation
 - If u, c, t had the same masses, this wouldn't happen!

• Mass and flavour eigenstates not the same:

 $|B^0_H\rangle = p|B^0\rangle - q|\bar{B}^0\rangle \qquad \qquad |B^0_L\rangle = p|B^0\rangle + q|\bar{B}^0\rangle$

Neutral B meson mixing

- Can describe mixing with the 2×2 effective Hamiltonian $H_{ij} = M_{ij} - i\Gamma_{ij}/2$
- Solving the Schrödinger equation, we get:
 - $\Delta m = m_H m_L$
 - $\Delta \Gamma = \Gamma_H \Gamma_L$

oscillation frequency small lifetime difference • $\phi_{mix} = -\arg(M_{12}/\Gamma_{12})$ CP-violating phase

Δm - the oscillation frequency [arXiv:1304.4741]

- To look for CP violation in mixing, need to know Δm
- B⁰ oscillations are fast! 2 million times a second
 - And B_s^0 are **35 times faster**...
- LHCb has excellent time resolution: 14% of B_s^0 period

New J. Phys. 15 (2013) 053021

CP violation in neutral B mesons

- CP violation governed by $\lambda_f = \frac{q}{p} \frac{\bar{A}(\bar{B}^0 \to f)}{A(B^0 \to f)}$
- Shows up in a time-varying CP asymmetry, containing three terms related to λ_f

$$a_{CP}(t) = \frac{\Gamma(\bar{B}^{0}_{(s)} \to f) - \Gamma(B^{0}_{(s)} \to f)}{\Gamma(\bar{B}^{0}_{(s)} \to f) + \Gamma(B^{0}_{(s)} \to f)}$$

 $= \frac{-C_f \cos\left(\Delta m t\right) + S_f \sin\left(\Delta m t\right)}{\cosh\left(\Delta \Gamma t/2\right) + A_{\Delta \Gamma} \sinh\left(\Delta \Gamma t/2\right)}$

• Decay

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$

• Interference

$$S_f = \frac{2 \mathrm{Im} \lambda_f}{1 + |\lambda_f|^2}$$

• Admixture of ${\it B}_{\it L}$ and ${\it B}_{\it H}$ decaying to final state

$$A_{\Delta\Gamma} = \frac{2 \mathrm{Re} \lambda_f}{1+|\lambda_f|^2}$$

• Lifetime difference negligible for B^0 ($\Delta\Gamma = 0$), so no $A_{\Delta\Gamma}$

- f is a CP eigenstate
- Only one decay diagram, so expect $C_f = 0$
- Mixing and decay diagrams interfere $(V_{td} = A\lambda^3(1 \rho i\eta))$

Mixing & decay (left), decay (right)

$B^0 ightarrow J/\psi K_s$ [arXiv:1709.03944]

• Amplitude measures amount of CP violation $(\sin 2\beta)$, diluted by flavour-tagging

• C_f consistent with zero (no CP violation in decay), visible asymmetry is mixing-induced CP violation

 $C_f = -0.014 \pm 0.030$ $S_f = 0.75 \pm 0.04$

Squeezing the Standard Model - $B_s^0 \rightarrow J/\psi\phi$

- No large CP violation in SM
- Measure $\phi_s = \phi_{mix} 2\phi_{dec} = -\arg(\lambda)$

- NP sensitivity: $\phi_s = \phi_s^{SM} + \Delta \phi_s$
 - $\phi_s^{SM} = -0.0376 \pm 0.0008$ rad [arXiv:1501.05013]
 - $\phi_s = -0.030 \pm 0.033$ rad [arXiv:1612.07233]

- Dominant penguin in SM
 - Highly sensitive to loop-level New Physics amplitudes

- Measure $\phi_s^{d\bar{d}}$ and $|\lambda|$
 - Angular amplitude analysis separates different polarisation amplitudes e.g. $K^{\ast 0}K^{\ast 0}$
 - $\phi_s^{d \bar{d}}$ and $|\lambda|$ common to all polarisations

• Time-dependent angular amplitude fit

• Consistent with SM prediction [Phys. Rev. D 88, 016007] and $B^0_s \to \phi \phi$ [LHCb-CONF-2018-001]

$B^0_{(s)} \rightarrow h^+h^-$ - CP violation in mixing <u>and</u> decay

- Neutral ${\cal B}$ meson decays to charmless final states
- CKM-suppressed tree and penguin interfere expect *CP* violation in decay

- Two classes of decay:
 - $B^0 \to \pi^+\pi^-, B^0_s \to K^+K^-$ time-dependent asymmetry
 - $B^0 \to K^+\pi^-, B^0_s \to K^-\pi^+$ time-integrated asymmetry

 $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$ [arXiv:1805.06759]

• Time-dependent asymmetry

$$a_{CP}(t) = \frac{-C_{CP}\cos\left(\Delta mt\right) + S_{CP}\sin\left(\Delta mt\right)}{\cosh\left(\Delta\Gamma t/2\right) + A_{\Delta\Gamma}\sinh\left(\Delta\Gamma t/2\right)}$$

• $\Delta \Gamma_d = 0$, so just have the top part for B^0

 $B^0 \to K^+\pi^-$ and $B^0_s \to K^-\pi^+$ [arXiv:1805.06759]

- $B^0 \to K^+\pi^-$ and $B^0_s \to K^-\pi^+$ are flavour-specific
- Measure time-integrated asymmetries

$$A_{CP} = \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2}$$

Measurement strategy [arXiv:1805.06759]

- Simultaneous fit to all modes: $m(h^+h^-)$, decay time, per-event decay time uncertainty and tagging parameters η
- Fit measures asymmetries directly

3 fb⁻¹ results [arXiv:1805.06759]

- Clear time-dependence in $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$
- 4σ significance for TD CP violation in the B_s^0 system

$$C_{\pi^{+}\pi^{-}} = -0.34 \pm 0.06 \pm 0.01$$
$$S_{\pi^{+}\pi^{-}} = -0.63 \pm 0.05 \pm 0.01$$
$$C_{K^{+}K^{-}} = +0.20 \pm 0.06 \pm 0.02$$
$$S_{K^{+}K^{-}} = +0.18 \pm 0.06 \pm 0.02$$
$$A_{K^{+}K^{-}}^{\Delta\Gamma} = -0.79 \pm 0.07 \pm 0.10$$
$$A_{CP}^{K^{+}\pi^{-}} = -0.084 \pm 0.004 \pm 0.003$$
$$A_{CP}^{K^{-}\pi^{+}} = +0.213 \pm 0.015 \pm 0.007$$

Measuring the fundamental CKM angles

- CP violation in SM embodied by Unitarity Triangle
- Total CP violation \propto Area
- $B^0_{(s)}$ decays constrain β and the hypotenuse
 - But they involve loop-level diagrams, and so could contain New Physics

- No top quark in the definition of γ
 - Can measure pure SM γ with tree level decays
- Look for direct CP violation by comparing V_{ub} and V_{cb}

Measuring γ with $B^- \rightarrow DK^-$ decays

- $D = D^0$ or \bar{D}^0 decaying to the same final state
- There are two competing diagrams
 - One suppressed by a factor r_B
- B^{\pm} diagrams have a relative phase $\theta = \delta_B \pm \gamma$

$D \rightarrow K_s h^+ h^-$: one of many D final states

- Measuring $B^{\pm} \to DK^{\pm}$ rates across several different D modes places strong constraints on γ
- Different r_B and δ_B values, but γ is shared
- $D \rightarrow K_s h^+ h^-$ particularly powerful

 $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_s \pi^+ \pi^-$ [arXiv:1806.01202]

- $B^+ \to DK^+$ and $B^- \to DK^-$ yields measured in **Dalitz bins**
- *D* decay hadronic parameters vary across bins control using CLEO-c input [PRD 82:112006]

Binned B^{\pm} yields combine to form x_{\pm} and y_{\pm} observables:

$$x_{\pm} = r_B \cos\left(\delta_B \pm \gamma\right)$$
$$y_{\pm} = r_B \sin\left(\delta_B \pm \gamma\right)$$

2 fb⁻¹ results (2015-2016 data) [arXiv:1806.01202]

- Angle between blobs gives you γ
- Uncertainties have halved compared to Run 1 only result

Run 1 + 2 (5 fb⁻¹) results combined:

$$\begin{split} \gamma &= (80^{+10}_{-9})^{\circ} \\ r_B &= 0.080^{+0.011}_{-0.011} \\ \delta_B &= (110^{+10}_{-10})^{\circ} \end{split}$$

Can γ hint at New Physics? [HFLAV Moriond 2018]

- SM γ from tree-level $B^{\pm} \rightarrow DK^{\pm}$
 - LHCb dominates the world-average [LHCb-CONF-2018-002]
- Can infer γ from knowledge of β e.t.c from loop-level $B^0_{(s)}$
 - Loop decays are NP sensitive could cause a shift in γ compared to SM...

$$\gamma_{\text{trees}} = (73.5^{+4.2}_{-5.1})^{\circ}$$
$$\gamma_{\text{loops}} = (65.3^{+1.0}_{-3.4})^{\circ}$$

γ inferred from loops

LHCb Upgrade I target precision

Let's not forget charm!

- *CP* violation requires **interference**
- Mixing: very small D^0 mixing amplitude (x & y < 1%)
- Decay: tree-level D decays have same CKM elements
 - Only suppressed $c \to d$ will interfere with $c \to u$ loops
- a_{CP} predicted to be $\mathcal{O}(10^{-3})$ in SM [PLB 774 (2017)]

$D \rightarrow K^+ K^- \pi^+ \pi^-$ amplitude analysis [arXiv:1811.08304]

- Rich resonant structure in $D^0 \to K^+ K^- \pi^+ \pi^-$
- Strong phase varies across phase space: may enhance *CP* violation sensitivity in some regions
- Amplitude fit to 5D phase space, fully allowing for *CP* violation

3 fb⁻¹ results [arXiv:1811.08304]

- Allow for asymmetries in amplitude coefficients, and differences in phase
- All consistent with zero within 1 15% uncertainty
 - no evidence of large *CP* violation

D^0 decay width differences [arXiv:1810.06874]

- Mixing: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$
- Without CP violation (p = q), mass eigenstate width difference is

$$y = \frac{(\Gamma_1 - \Gamma_2)}{2\Gamma}$$

• Because of mixing, the width to CP-even decays $(K^+K^-, \pi^+\pi^-)$ can differ from the average Γ

 $y_{CP} = \frac{\Gamma_{CP+}}{\Gamma} - 1$

3 fb⁻¹ results [arXiv:1810.06874]

- Without any CP violation, $y_{CP} \equiv y$
 - $p \neq q$ can move y_{CP} away from well-known y value
- Measure y_{CP} from width ratios $\frac{\Gamma(D^0 \to h^+ h^-)}{\Gamma(D^0 \to K^- \pi^+)}$ $(h \in \{K, \pi\})$

 $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^$ consistent, and y_{CP} combination agrees with world average y:

 $y_{CP} = (0.57 \pm 0.13 \pm 0.10)\%$

 $y = (0.62 \pm 0.07)\%$ [HFLAV]

- LHCb continues to operate at the ${\it CP}$ violation frontier
- World-best results across beauty and charm, both time-dependent and time-integrated
- Expect reduction in ϕ_s , γ , y_{CP} uncertainties as Run 1 + 2 measurements continue to appear
- Stay tuned for more results soon, and keep an eye on our **Upgrade plans** (Olaf's talk this afternoon)