

Heavy Neutrino searches at ATLAS & CMS

Debarati Roy on behalf of the ATLAS & CMS Collaboration

- SM :
- => Extremely successful theory.
- => Guided for a series of new particle discoveries.
- => Discovery of Higgs boson by ATLAS & CMS in 2012 again glorifies its success!
- However there exist a couple of experimental observations that SM cannot explain.
- => New Physics can be hiding there!
- e.g. Experimental signature of neutrino oscillation concludes neutrino has a very small mass.
- => Several searches performed with LHC data to explain the origin of a very small neutrino mass!

Several theories exist in Beyond Standard Model (BSM) to explain neutrino mass!

LRSM (Left Right Symmetric Model) :
 => Restores parity by introducing right-handed W, Z bosons (WR, ZR) and right-handed neutrinos (NR – Ne, Nµ, Nτ).

=> Includes the Seesaw mechanism (with heavy right-handed Majorana neutrino (NR) so explains small (SM neutrino) vL masses.

=> Seesaw mechanism couples vL masses to NR through a mass mixing matrix. It allows heavy neutrinos to be GeV-TeV scale and therefore discoverable at LHC .

• vMSM (neutrino Minimal Standard Model) :

=> Incorporates Seesaw mechanism.

=> Small neutrino masses result from large mass of NR similar to LRSM.
 => Incorporates heavy-neutrino states without additional vector bosons.

ATLAS & CMS latest 13 TeV results shown in this presentation.

Latest heavy neutrino search in ATLAS with 36.1 fb⁻¹ of data :

- Based on LRSM theory.
- <u>Type-I seesaw mechanism</u> => Majorana neutrino
- <u>Inverse seesaw mechanism</u> => Dirac neutrino
- Keung–Senjanović (KS) process considered ($m_{NR} \leq 2m_{WR}$)

arXiv:1809.11105, submitted to JHEP

Analysis Strategy, Object & Event Selection :

- Always SF (same flavour) leptons (either electron (e) or muon(μ)) selected in final state.
- Exactly 2 leptons ($E_T/p_T > 25/30$ GeV) & 2 jets ($p_T > 100$ GeV) selected.
- SS (same-sign), OS (opposite-sign) lepton channels cover for both Majorana and Dirac hypotheses with the best sensitivity.
- 50%-50% probability assumed between SS & OS for Majorana case.
 100% probability for OS corresponds to Dirac case.
- Dominating backgrounds : OS (ttbar, Z+jet(s)). SS(misidentification, diboson).
- Signal region (SR) defined mainly to reduce Z+jet(s).

arXiv:1809.11105, submitted to JHEP

Data-Prediction(Pred) Comparison in Analysis regions :

Several analysis regions studied

Region	Control region			Validation region		Signal region	
Channel	$\operatorname{CR}(\ell^{\pm}\ell^{\mp})$	$\operatorname{CR}(\ell^{\pm}\ell^{'\mp})$	$\operatorname{CR}(\ell^\pm\ell^\pm)$	$VR(\ell^{\pm}\ell^{\mp})$	$\text{VR}(\ell^\pm\ell^\pm)$	$\mathrm{SR}(\ell^\pm\ell^\mp)$	$\text{SR}(\ell^\pm\ell^\pm)$
mee [GeV]	[60, 110]	_	[110, 300]	[110, 400]	[300, 400]	> 400	> 400
<i>т</i> µµ [GeV]	[60, 110]	_	[60, 300]	[110, 400]	[300, 400]	> 400	> 400
$m_{e\mu}$ [GeV]	_	> 400	_	_	_	_	
H _T [GeV]	> 400	> 400	_	> 400	_	> 400	> 400
m _{jj} [GeV]	> 110	> 110	—	> 110	_	> 110	> 110
Jet $p_{\rm T}$ [GeV]	> 100	> 100	> 50	> 100	> 50	> 100	> 100

Data-Pred agreed within uncertainty in[•] CR & VR.

Reweighting factor $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Novosibirsk fit Data/simulation ratio 0.8 Z+Jet(s) events peak = (0.24 ±0.01) TeV width = (1.12 ±0.03) TeV tail = -6.2 ±0.9 0.6 0.4 0.2 2 2.5 3 3.5 m" [TeV] Z+jet(s) mismodelling in OS addressed with data-driven reweighting factors as a function of m_{ii}.

ATLAS

Data-Prediction(Pred) Comparison in SR :

 In SR reasonable agreement found between Data & Pred in both e & μ channels (& in both SS and OS channels).

- Almost no data in region with $m_{WR} > 3$ TeV.
- No significant deviation found.

arXiv:1809.11105, submitted to JHEP

Final Result (Setting up limit) :

e, μ channels separately tested for Majorana hypothesis.

 m_{WR} up to 4.7 TeV are excluded at 95% CL, for m_{NR} in 0.5–3.0 TeV region for the $g_R=g_L$ assumption.

Latest heavy neutrino search in CMS with 35.9 fb⁻¹ of data with same final state :

- Based on LRSM theory : $W_R \to \ell N_R \to \ell \ell W_R^* \to \ell \ell q \overline{q}', \ \ell = e \text{ or } \mu.$
- No charge requirement on leptons.
- Dominating backgrounds : ttbar, DY+jet(s), tW, diboson.
- Inspired by previous WR search at 8 TeV with a 2.8σ local excess $m_{eejj} \sim 2.1$ TeV.
- Leading & subleading leptons (p_T > 60 GeV & 53 GeV) & Particle Flow (PF) jets (p_T > 40 GeV) selected.
- Signal region (SR) : $m_{lljj} > 600$ GeV, $m_{ll} > 200$ GeV (to reduce Z +jet(s)).

9

**m_{ij} is invariant mass of objects ij

JHEP 05(2018) 148

Data-Simulation(Sim.) Comparison in CR/VR :

Various Control Region (CR) studied ulletto estimate most dominating backgrounds (DY+jet(s), ttbar).

Analysis Regions	Event Selection	a de la construction de la const
CR for DY+jet(s)	2SF, OS e or μ (80 GeV < m _{ll} < 100 GeV), 2 jets, m _{lljj} < 600 GeV	$\begin{array}{c} \square & 300 & 400 & 500 & 600 & 700 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ &$
VR for DY+jet(s)	2SF, OS e or μ (m _{ll} > 200 GeV), 2 jets, m _{lljj} < 600 GeV	$S_{\text{L}}^{\text{S}} = 10^3$ $DY + je$ 10^2 $DY + je$ 10^2 $Statistic10 DY + je$
CR for ttbar	1 e & 1 μ (m _{ll} > 200 GeV), 2 jets, m _{lljj} > 600 GeV	10 ⁻¹ 10 ⁻²

JHEP 05(2018) 148

Data-Simulation(Sim.) Comparison in SR & limit estimation :

No significant deviations found in data in SR.

Observed limit at 95% CL on WR mass ~ 4.4TeV for both channels with $m_{NR} = m_{WR}/2$.

JHEP 05(2018) 148

Latest heavy neutrino search in CMS with 12.9 fb⁻¹ of data in lepton + jets final state :

- Based on LRSM theory : $W_R \rightarrow \tau + N_{\tau}$, where $N_{\tau} \rightarrow \tau + W_R^* \rightarrow \tau + q\overline{q}$.
- Focussed on $1 \tau(\tau_1)$ decays to e/μ . Other $\tau(\tau_h)$ decays hadronically.
- <u>PF algorithm</u> utilised to identify individual particles.
- Reconstruction of τ_{h} (hadrons-plus-strips algorithm), jets, missing energy performed with identified particles as inputs.
- Selection : e or μ with $p_T > 50$ GeV. τ_h with $p_T > 60$ GeV. Transverse momentum imbalance (p_T^{miss}) > 50 GeV. Invariant mass of e/ μ + τ_h > 150 GeV.
- Identified e, μ , τ_h required to originate from same vertex with $\Delta R > 0.5$. 12 JHEP 07(2017) 121

Observed (in data)-Expected (in simulation) comparison in SR : No deviation from SM found.

- ttbar background validated in e/μ + at least 2 jets final state.
- W+jets background estimated in W -> $\mu\nu/$ ev + at least 3 jets withno b-tagged jet.
- Estimation of multi jet background performed by loosening $\tau_{\rm h}$ ID, Isolation criteria.

Latest heavy neutrino search in CMS with 35.9 fb⁻¹ of data with hadronically decaying τ leptons (τ_h) + jets final state :

- Based on LRSM theory with 2 final state τ leptons decaying hadronically.
- All jets $p_T > 30 \text{ GeV} (2 \text{ jets} with <math>p_T > 50 \text{ GeV}) \cdot \tau_h > 32$ GeV $(2 \tau_h > 70 \text{ GeV})$.
- Dominating backgrounds : ttbar, Z+jet(s), multijet.

 $m(\tau_{\rm h,1},\tau_{\rm h,2},j_1,j_2,p_{\rm T}^{\rm miss}) = \sqrt{(E_{\tau_{\rm h,1}} + E_{\tau_{\rm h,2}} + E_{j_1} + E_{j_2} + p_{\rm T}^{\rm miss})^2 - (\vec{p}_{\tau_{\rm h,1}} + \vec{p}_{\tau_{\rm h,2}} + \vec{p}_{j_1} + \vec{p}_{j_2} + \vec{p}_{\rm T}^{\rm miss})^2}.$

Various Analysis regions comparisons and limit setup

15

- ttbar CR : 2 muons + at least 1 btagged jet with $m_{\mu\mu} < 80$ GeV or $m_{\mu\mu} > 110 \text{ GeV}.$
- Z+jet(s) CR : 2 muons with 80 GeV < $m_{\mu\mu}$ < 110 GeV.
- Data driven ABCD matrix method used for multijet event estimation : p_T^{miss} (50 GeV) & τ_h isolation as discriminators between signal & QCD jets.

Latest heavy neutrino search in CMS with 35.9 fb⁻¹ of data vMSM theory :

- Also looked into N production via $W\gamma$ fusion.
- Same sign leptons + (at least 2 jets (R = 0.4)/exactly 1 jet (R = 0.4)/at least 1 large jet (R = 0.8) in final state considered.
- No flavour conservation considered (ee or $\mu\mu$ or $e\mu$).
- Limits estimated with matrix element describing mixing of N with SM ν of flavour e or μ .

arXiv:1806.10905, Submitted to JHEP

Various Analysis regions category & object selection :

- Large jet with R = 0.8 required to have τ₂₁ < 0.6 and a pruned jet mass between 40 & 130 GeV. (See Pierre-Antoine Delsart's talk later).
- $p_T > 25(15)$ GeV for ee, > 20(10) GeV for $\mu\mu$, 25(10) GeV for e μ .
- Different SR(s) studied based on (m_N ≥ 80 GeV or m_N ≤ 80 GeV), combination of flavours and small jet or large jet selection :

=> low- & high mass SR1 : number of R = 0.4 jets >= 2, R = 0.8 jets = 0.
=> low-mass SR2 : number of R = 0.4 jets = 1, number of R = 0.8 jets = 0.
=> high-mass SR2 : number of R = 0.8 jets >= 1.

• Several variables used simultaneously for optimized signal selection.

¹⁷ arXiv:1806.10905, Submitted to JHEP

Limit setup with mixing matrix element :

<u>CR(s) classified in following categories</u> : a. Multiple prompt leptons => diboson b. Misidentified leptons => W+jets, ttbar c. Sign mismeasurement => OS 2leptons

For N masses between 20 and 1600 GeV, upper limits on $|V_{ln}|^2$ range between 2.3 * 10⁻⁵ & 1.0.

¹⁸ <u>arXiv:1806.10905</u>, Submitted to JHEP

- A comprehensive set of searches for heavy neutrinos carried out (ongoing) in both ATLAS & CMS (<u>With Type-III seesaw</u> <u>mechanism heavy neutrino search using 79.8 fb-1 of ATLAS data</u>, glimpses in backup!).
- Until now no consistent deviation from SM prediction found.
- Searches with same final state performed at various centre of mass energies of LHC (e.g. 7 TeV, 8 TeV 13 TeV) helps in gaining deeper understanding of heavy neutrino theories.
- Exclusion limit reaches to 4.7 TeV m_{WR} with mN_R 0.5–3.0 TeV. However it depends on the specific model used!
- Higher energy boosted scenarios can be explored to gain deeper insights for lower $mN_R!$

Additional Material

	$\int OS (\ell^+ \ell^ e^+ e^- e^\pm \mu^\mp \mu^+ \mu^-)$				$\frac{1}{1} \qquad \mathbf{SS} \left(\ell^{\pm} \ell^{\pm} - \ell^{\pm} \ell^{\pm} - \ell^{\pm} \ell^{\pm} + \ell^{\pm} \ell^{\pm} \right)$			
	Top CR	Z+jets VR	$= e^{\mu}e^{\mu}, e^{\mu}\mu^{\mu}, \mu^{\mu}\mu^{\mu})$ $m_{jj} \text{ VR}$	SR	Z+jets VR	$\frac{\text{SS}(\ell^{-}\ell^{-} = \ell^{-}\ell^{-})}{m_{jj} \text{ VR}}$	$, e \mu , \mu \mu)$ $m_{jj} CR$	SR
N(jet)	> 2	> 2	> 2	> 2	> 2	> 2	> 2	> 2
N(b-jet)	≥ 2	0	0	0		0	0	0
$m_{jj} [GeV]$	[60, 100)	[60, 100)	$[35,60) \cup [100,125)$	[60, 100)	[60, 100)	$[0,60) \cup [100,300)$	$[0,60) \cup [100,300)$	[60, 100)
$m_{\ell\ell}[GeV]$	$[110,\infty)$	[70, 110)	$[110,\infty)$	$[110,\infty)$	[70, 100)	$[100,\infty)$	$[100,\infty)$	$[100,\infty)$
$\operatorname{Sig}(E_{\mathrm{T}}^{\mathrm{miss}})$	≥ 5	≥ 5	≥ 10	≥ 10	≥ 5	≥ 5	≥ 5	≥ 7.5
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, l)_{\mathrm{min}}$				≥ 1				
$p_{\rm T}(jj) {\rm [GeV]}$				$[100,\infty)$				$[60,\infty)$
$p_{\rm T}(\ell\ell)$ [GeV]				$[100,\infty)$				$[100,\infty)$
$H_{\rm T} + E_{\rm T}^{\rm miss}$ [GeV]	$ [300,\infty) $	$[300,\infty)$	$[300,\infty)$	$[300,\infty)$		$[500,\infty)$	[300,500)	$[300,\infty)$

- Final state : 2jets + 2 leptons (SS or OS) + neutrinos
- No flavour conservation considered (ee or $\mu\mu$ or $e\mu$)

ATLAS-CONF-2018-020

Additional Material

Exclusion limit at 95% CL 550 GeV expected and 560 observed.

ATLAS-CONF-2018-020