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Břehová 7, 115 19 Prague, Czech Republic

Abstract. Interactions of protons (pp) or of a proton with a lead nucleus (p–Pb) were not
expected to form a deconfined hot and dense matter, called the Quark-Gluon Plasma (QGP),
which is instead produced in heavy-ion collisions. However, high-multiplicity events in small
collision systems exhibit signs of collectivity, which are understood as a signature of the QGP
emergence in heavy-ion collisions. An excellent tool to probe the presence of collectivity is
the anisotropic flow measured with two- and multi-particle cumulants. In these proceedings,
we present the first measurement of flow coefficients and their magnitude correlations using
symmetric cumulants for charged particles in pp collisions at centre-of-mass energies of

√
s = 13

TeV, p–Pb at
√
sNN = 5.02 TeV, Xe–Xe at

√
sNN = 5.44 TeV and Pb–Pb collisions at√

sNN = 5.02 TeV, collected during the LHC Run 2 programme. In addition, the flow coefficients
of identified particles in p–Pb collisions are shown. Such a broad spectrum of colliding systems
with different energies and a wide range of multiplicity allows for a detailed investigation of
their collision dynamics. Non-flow effects, which are azimuthal correlations not originating
from a common symmetry plane, are suppressed with the pseudorapidity separation and the
subtraction method. These results provide an important insight into the nature of collective
phenomena in different collision systems.

1. Introduction
Heavy-ion collisions at ultrarelativistic energies are used to create a state of strongly-interacting
matter called the Quark–Gluon Plasma (QGP), where quarks and gluons are in a deconfined
state. In a hydrodynamic picture, the collective evolution of this medium translates the initial
spatial anisotropies in the overlap region of the colliding heavy nuclei into an anisotropy of final-
state particles. To characterise the anisotropy, the azimuthal distribution of emitted particles
can be decomposed into a Fourier expansion relative to a common symmetry plane Ψn with
anisotropic flow coefficients vn = 〈cos [n(ϕ−Ψn)]〉 [1]:

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn cos [n(ϕ−Ψn)]. (1)

The flow harmonics vn thus quantify the preferred direction of emitted particles, and represent
a collective response of the QGP to the initial spatial anisotropies, which makes them one of the
most suitable probes to study the properties of this medium. An extensive set of measurements
of anisotropic flow performed at the Large Hadron Collider (LHC), together with quantitative
model comparisons have improved our knowledge about the QGP [2, 3, 4, 5, 6, 7, 8]. It is now
well established that this medium behaves like a nearly perfect, collectively expanding liquid;



this behaviour manifests itself in the form of long-range multi-particle correlations between the
final-state particles.

Small collision systems, such as pp or p–Pb collisions, were originally considered to lack the
conditions necessary to create a hot and dense medium such as the QGP. However, recent
measurements of anisotropic flow revealed features, similar to those observed in heavy-ion
collisions, that are believed to indicate the presence of the QGP. In particular, measurements
of two-particle correlations as a function of the pseudorapidity difference ∆η and the azimuthal
angle difference ∆ϕ revealed a near side “ridge” structure in high-multiplicity pp and p–
Pb collisions [9]. A negative sign of the four-particle cumulant was also observed at high
multiplicity in collisions of small systems [10]. Measurements of pT-differential flow coefficients
for identified particles in high multiplicity p–Pb collisions showed a hint of a mass ordering at
low pT, and a baryon-meson grouping at intermediate pT, which is understood as a consequence
of hydrodynamic flow and partonic collectivity in heavy-ion collisions [11]. Whether these
similarities with heavy-ion collisions, also observed in small collision systems, originate from
the same mechanisms is yet to be understood. Phenomenological models with a hydrodynamic
description of the system evolution are able to describe measurements obtained with two-particle
correlations [12, 13, 14, 15, 16]. However, other alternative scenarios, including correlations of
gluon fields in the initial stages of a collision, are also able to qualitatively reproduce some
features of the results of flow coefficients [17, 18, 19]. Therefore, new measurements that are
able to disentangle between various theoretical approaches, are of great necessity.

The study presented here shows the ALICE measurements of flow coefficients and their
correlations as a function of multiplicity in a variety of collision systems [20], and new pT-
differential measurements of numerous identified particle species in p–Pb collisions [21]. All the
results are extracted using the latest techniques to suppress non-flow contamination as much as
possible, which makes the comparison to future theoretical calculations straightforward.

2. Analysis method
The analysed data samples were recorded by ALICE [22] during the LHC Run 2 period. In
particular, data from Pb–Pb collisions at centre-of-mass energies

√
sNN = 5.02 TeV, Xe–Xe

collisions at
√
sNN = 5.44 TeV, p–Pb collisions at

√
sNN = 5.02 TeV and pp collisions at√

s = 13 TeV were selected. Minimum-bias triggered events, based on a coincidence of signals
between the two arrays of the V0 detector (V0A and V0C), were used in all collision systems
except for pp collisions. In this collision system, a dedicated trigger, selecting approximately
0.1% of the largest multiplicity events based on the amplitude in both arrays of the V0 detector,
was applied. Events that passed the trigger threshold had 4 times larger multiplicity in the
V0 acceptance than the minimum-bias average. The selected data samples were further reduced
from pileup and background events. Overall, the results from the analyses with charged particles
were obtained from 3.1×108 high-multiplicity pp, 2.3×108 p–Pb, 1.3×106 Xe–Xe and 5.5×107

Pb–Pb collisions, while 6.0× 108 minimum bias p–Pb and 1.7× 108 minimum bias pp collisions
were used for the analyses with identified particles. These data samples were further divided
into several event classes based on the multiplicity distribution measured with the V0A detector.

Charged tracks with a transverse momentum of 0.2 < pT < 3.0 GeV/c and pseudorapidity
|η| < 0.8 were used for the analyses. Particle identification of π±, K± and p(p) was performed
using a Bayesian approach [23] based on the signals from the Time Projection Chamber (TPC)
and Time-of-Flight (TOF) detectors. Particles with a short life-time, K0

S, Λ(Λ) and φ, cannot
be detected directly, but instead are reconstructed via their decay products on a statistical basis
using the following decays: K0

S → π+ + π−, φ→ K+ + K− and Λ→ π− + p (Λ→ π+ + p).
Measurements of multi-particle cumulants [24, 25, 26, 27] and symmetric cumulants [28] were

calculated using the generic framework [28] with weighted Qn-vectors, to correct for non-uniform
acceptance and tracking inefficiencies.



Small collision systems are largely dominated by short-range few-particle correlations not
related to the common symmetry plane, such as jets or resonance decays, generally denoted
as “non-flow”. Correlations between particles originating from non-flow effects contaminate
our measurements, and may obscure the possible signal of global collectivity involving many
particles. The sub-event method [29, 30] was employed in the measurements in order to suppress
this bias. In this method, particle m-tuplets are taken from different sub-events separated by a
pseudorapidity gap, which ensures a long-range separation betwen particles that are correlated.

In addition, a subtraction method at the cumulant level, using data from minimum bias
pp collisions, was used in pT-differential measurements to remove the remaining non-flow
contamination, following the equation:

vpPb,sub2 (pT) =
dpPb2 (pT)− k · dpp2 (pT)√

cpPb2 − k · cpp2
. (2)

Here, c2 and d2 represent the reference and the differential two-particle cumulants, respectively,
and k = 〈M〉pp/〈M〉pPb is a scaling ratio of mean event multiplicities used for the estimation of
non-flow effects to account for the different system sizes of pp and p–Pb collisions.

3. Results
Measurements of flow coefficients vn of inclusive charged particles from pp, p–Pb, Xe–Xe and
Pb–Pb collisions using the two particle cumulant method with a large pseudorapidity gap (|∆η|)
to suppress non-flow effects are shown in Figure 1. Large collision systems (Pb–Pb and Xe–Xe)
exhibit a strong multiplicity (Nch) dependence of v2, which is understood as a hydrodynamic
response to the initial geometry of the overlapping region of the colliding nuclei at large and
intermediate multiplicities. The strength of the interactions that are responsible for the transfer
of the initial spatial anisotropies to the final state momentum anisotropies is reflected at low
multiplicities. In addition, an ordering of flow coefficients v2 > v3 > v4 is observed in the whole
multiplicity range in both Xe–Xe and Pb–Pb collisions, except for the fluctuation-dominated
region of very central collisions (with the highest multiplicity), where v2 ∼ v3. In peripheral
heavy-ion collisions (low multiplicities), the values of vn become compatible with those measured
in pp and p–Pb collisions. A weak Nch-dependence of vn is observed in both small and large
collision systems in this region, except for v2, which rises with multiplicity for Nch ≥ 50 in
Pb–Pb collisions, while the weak Nch-dependence remains in pp and p–Pb collisions at similar
multiplicity. An ordering of vn is reported in small collision systems, similar to that observed in
in Xe–Xe and Pb–Pb collisions.

Differential measurements of v2 of inclusive charged hadrons h± and several different species
of identified particles in p–Pb collisions are reported in Figure. 2. The results are obtained with
unprecedented precision as a function of pT with a |∆η| > 0.4 separation and an additional non-
flow subtraction. Similar to heavy-ion collisions, a clear mass ordering is observed for pT < 2.5
GeV/c. It suggests a strong radial expansion of particles with similar velocity, causing a push of
the heavier ones to higher momenta. In the region of intermediate momenta 2.5 < pT ≤ 6 GeV/c,
the v2 of different particle species are grouped into two distinctive trends. Such a behaviour
was also observed in heavy-ion collisions where it is understood as a consequence of parton
coalescence [31] or recombination mechanism at the point of particle production [32]. Both
observations and the trend, qualitatively consistent with hydrodynamic calculations [15, 16],
suggest the presence of hydrodynamic collectivity in high-multiplicity p–Pb collisions.

Figure 3 presents measurements of v2{m} using higher order cumulants (m > 2) compared
between small (pp and p–Pb) and large (Xe–Xe and Pb–Pb) collision systems. The existence of
long-range multi-particle correlations in large collision systems is inferred from the consistency
of the results from standard and subevent method (v2{m} ≈ v2{m}sub) and of the results
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Figure 1. Multiplicity dependence of v2, v3 and v4 measured using the two-particle cumulant
method with a |∆η| gap in small (pp and p–Pb) and large (Xe–Xe and Pb–Pb) collision systems.

Figure 2. Transverse momentum dependence of vsub2 {2, |∆η| > 0.4}(pT) of h±, π±, K±, K0
S,

p(p) , Λ(Λ) and φ in p–Pb collisions in the 0− 20% V0A multiplicity class.

from cumulants of different orders (v2{4} ≈ v2{6} ≈ v2{8}). In p–Pb collisions, the non-flow
contribution to multi-particle cumulants can be further suppressed with the 3-subevent method,
resulting in a decrease of the four-particle cumulant c2{4} > c2{4}3−sub. In turn, this leads to
an increase of the flow signal v2{4}3−sub > v2{4}, based on the relation v2{4} = 4

√
−c2{4} [27].

A real-valued v2{4} could not be obtained in the largely non-flow dominated pp collisions.
However, the contamination was successfully reduced with the 3-subevent method, leading
to the first observed signal of v2{4}3−sub in pp collisions with ALICE and suggesting the



presence of multi-particle correlations even in pp collisions. The collective behaviour of small
systems is further supported by compatible values of different orders of multi-particle cumulants
v2{4}3−sub ≈ v2{6}, observed in both pp and p–Pb collisions.
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Figure 3. Multiplicity dependence of v2{m} for m > 2 in pp, p–Pb, Xe–Xe and Pb–Pb
collisions.

The implications of the existence of long-range multi-particle correlations in small collision
systems should be investigated with model comparisons. As it was mentioned in the
Introduction, it is not yet clear which model scenario is the most suitable to describe the origin
of these correlations in pp or p–Pb collisions. For that purpose, observables with a power to
discriminate different model approaches are necessary. Symmetric cumulants (SC), in particular
SC(3, 2) and SC(4, 2), provide access to the initial conditions and the dynamical evolution of
the system [8]. Measurements of SC(m,n) with the 3-subevent method in pp, p–Pb, Xe–Xe and
Pb–Pb collisions are reported in Figure 4. A positive SC(4, 2)3−sub can be seen in the top panel,
which is observed for all collision systems and in the entire multiplicity range. On the other
hand, the SC(3, 2)3−sub is negative at large and intermediate multiplicities for large collision
systems, while there is a hint of a change to positive signs at Nch ≤ 90. This trend seems to be
followed by the results obtained in small collision systems.

4. Summary
We have presented new measurements of v2(pT) using two-particle cumulants of inclusive and
identified particles in high-multiplicity p–Pb collisions at

√
sNN = 5.02 TeV. In addition, the

multiplicity dependence of vn coefficients and their correlations in various collision system has
been reported. The examined features of the measured results of flow coefficients in small
collision systems and their striking similarity with measurements from large collision systems
support the existence of collective phenomena in high-multiplicity pp and p–Pb collisions. The
nature of these collective phenomena was further addressed by measurements of symmetric
cumulants. The latter suggest that common mechanisms are responsible for the observations
in small and large systems at similar multiplicities. All the results shown here provide an
invaluable tool to further constrain the modelling of small collision systems and might allow us
to understand the origin of collective effects in pp and p–Pb collisions.
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Figure 4. Multiplicity dependence of SC(m,n)3−sub in pp, p–Pb, Xe–Xe and Pb–Pb collisions.
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