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Abstract. In a revolutionary paper, Matsui and Satz proposed using the suppression of
quarkonia as a smoking gun signature of deconfinement in relativistic heavy ion collisions.
The stunning success of using strong-coupling, AdS/CFT techniques to predict the viscosity to
entropy density ratio extracted from RHIC and LHC heavy ion collision data using sophisticated
3+1D relativistic viscous hydrodynamics has prompted further investigation into the physics
of a strongly-coupled plasma. We compute, for the first time, the suppression of bottomonia
in a strongly coupled QGP, and compare the results to those from a weakly coupled QGP and
to data. The complex binding energies which inform the thermal width and hence the RAA of
Υ(1S) are determined using imaginary time techniques.

1. Introduction
The relativistic heavy-ion collisions at the Large Hadron Collider (LHC) and the Relativistic
Heavy Ion Collider (RHIC) are sufficiently energetic for hadrons to transition into a new phase
of colored matter, known as the quark-gluon plasma (QGP) [1]. Quarkonia may theoretically
exist in conjunction with the QGP at T > Tc, where Tc is the critical temperature required for
QGP formation, due to its small binding radii relative to the screening radius. At some T , the
screening radius becomes smaller than the typical quarkonia radii, leading to their dissolution.
In addition, excited states of quarkonia dissociate before the ground state [2]. The suppression
of the bound states of quarkonia in heavy-ion collisions is hence considered a valuable indicator
of the formation of QGP, and the comparison of this suppression to that in minimum bias p+ p
collisions where no QGP is formed, is a useful probe of the QGP’s properties.

Potential models can be used to describe the interaction of the quark and antiquark in the
qq̄ pair to calculate the suppression of quarkonia production in heavy-ion collisions [3]. This
potential at finite temperature contains not only a standard real Debye-screened term, but also
an imaginary part which gives the thermal width of the state, and hence its suppression [4].
One of the first to show this was [5], which made use of perturbative methods to find the static
potential of quarkonia at finite temperature. They concluded that the thermal width of the
state increases with T , suggesting that at high T the dissociation due to the effect described by
the imaginary part of the potential occurs before color screening can even come into effect.

The complex-valued potential was explored further using non-perturbative lattice QCD by
[4], among others, allowing for the study of strongly-coupled quarkonia as well. An important
consideration in finding heavy quarkonium suppression is the velocity of the qq̄ in relation to the



surrounding QGP, however, while perturbative and lattice QCD calculations generally consider
the qq̄ meson to be at rest in the medium.

The suppression of quarkonia moving at velocity in a QGP hence requires holographic
techniques such as the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence.
The potential for static quarkonia at finite temperature in N = 4 super Yang-Mills theory was
calculated by [6, 7, 8], among others. Liu, Rajagopal and Wiedemann (LRW) [9] were the first
to present a quantitative description from AdS/CFT of the consequences of velocity on the
screening length of charmonium, suggesting that for strongly coupled J/ψ, velocity could result
in a significant additional source of suppression at high transverse momentum pT in the form
of a decrease in dissociation energy with increased velocity. Since then, many have performed
similar investigations, and while the aforementioned are limited in their scope of application, it
is interesting to note that [10] in particular concludes that the effect of velocity may not be as
consequential as postulated in LRW.

On the other hand, from pQCD, [11] found a potential for weakly coupled qq̄ states which is
dependent on velocity and shows that the dissociation energy increases with quarkonia velocity.

We would ultimately like to investigate the consequences of these different velocity dependence
pictures from AdS/CFT compared to pQCD. Here we have a more modest goal: to compare the
suppression of quarkonia at rest with respect to the QGP for pQCD vs. AdS/CFT potentials.

We consider the case of ground state bottomonia at rest with respect to an isotropic quark-
gluon plasma. We follow the methodology outlined in Krouppa et al. [12], with a number of
improvements. Given a potential, we evolve a random wave function through imaginary time;
after a sufficiently long evolution, only the ground state wave function remains. This ground state
wave function then determines the ground state binding energy. We independently confirmed
these binding energies by an application of the complex Ritz variational method [13]. Finally,
following Krouppa, we used the complex binding energies in a quarkonia suppression model to
compute RAA.

2. Methodology
2.1. Potential Models
The potential model presented here for weakly coupled quarkonia is taken from [12] and is
complex-valued. Both the real and the imaginary parts of the potential were found using leading-
order perturbative calculations. We show the real part and imaginary part of the potential V (r)
as a function of quark separation r in figure 1a and figure 1b, respectively.

We modeled the strongly coupled quarkonia at rest in a QGP with the potential given in
Albacete et al. [6]. In that work, the authors derive the potential in N = 4 super Yang-Mills
at finite temperature using AdS/CFT. Figures 2a and 2b show the real and imaginary parts of
Vs(r) as a function of quark separation r, taking the ’t Hooft coupling λ = 10. See [14] for full
functional forms of the potential models.

Note that the real parts of the pQCD and AdS/CFT potentials, shown in figures 1a and 2a,
respectively, are similar in form, but the imaginary parts from pQCD and AdS/CFT, shown
in figures 1b and 2b, respectively, differ greatly: the imaginary part of the pQCD potential
saturates as a function of r whereas that of the AdS/CFT potential diverges.

2.2. Numerical Integration of TDSE
The methodology used here follows that of [12, 15], adapted to the special case of an isotropic
plasma, with various modifications of the discretization (see [14] for details). In order to
compute the ground state wave function, and hence the binding energy, we need to solve the
non-relativistic, time dependent Schrödinger Equation (nRTDSE):

i∂tΨ(r, t) = HΨ(r, t). (1)
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Figure 1. The (a) real part of the weakly coupled potential <[V (r)], and the (b) imaginary
part of the potential =[V (r)], as a function of the distance r between the quark and anti-quark
in the bb̄, for various T in an isotropic plasma.
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Figure 2. The (a) real part of the strongly coupled potential <[Vs(r)] and the (b) imaginary
part of the potential =[Vs(r)] as a function of the distance r between the quark and anti-quark
in the bb̄, for various temperatures T in an isotropic plasma.

Performing a Wick rotation to an imaginary time τ ≡ it, Eq. (1) has the general solution

Ψ(r, τ) =

∞∑
n=0

cnψn(r)e−Enτ . (2)

Since En > E0 for all n > 0, one can evolve forward in imaginary time such that all the
higher order wave functions are suppressed and only the ground state wave function remains:

lim
τ→∞

Ψ(r, t)→ c0ψ0(r)e
−E0τ , (3)

where ψ0(r) is the ground state wave function and E0 the ground state energy. The binding
energy of the state can then be found from

Ebind ≡ E0 −<[V (|r| → ∞)], (4)

where the ground state energy E0 can be found from the ground state wave function,

E0 =

∫
r2 dr ψ0(r)

∗H ψ0(r)∫
r2 dr |ψ0|2

. (5)



2.3. Suppression
We would like to make quantitative predictions for the suppression of bottomonia in heavy ion
collisions and compare to measured data. The nuclear modification factor RAA is calculated
following [12]:

RAA(pT , y,x⊥, b) = e−ζ(pT ,y,x⊥,b), (6)

ζ ≡ Θ(τf − τform)

∫ τf

max (τform,τ0)
dτ Γ(τ,x⊥, ς = y),

where the thermal width Γ(τ,x⊥, ς) is given as

Γ(τ,x⊥, ς) =

{
−2=[Ebind] <[Ebind] < 0

γdis <[Ebind] ≥ 0.
(7)

We take γdis = 10 GeV, as was done in [12]. Furthermore, b is the impact parameter, and y the
rapidity, taken to be zero. The formation time τform is calculated using

τform = ET τ
0
form/mQ (8)

where τ0form = 0.2 fm is taken for the initial formation time of the state [12]. Lastly, the final
time τf is taken as the time at which the temperature T of the QGP drops below the critical
temperature Tc.

We use the optical limit of the Glauber model [16] to describe the background in the case
of
√
sNN = 2.76 TeV Pb+Pb collisions. Taking a weighted average over the region with limits

x⊥ = [−10, 10] fm, we have

RAA(pT , b) =

∫
d2x⊥dφ TAA(x⊥, b) RAA(pT , y,x⊥, b)

2πNcoll
, (9)

where TAA(x⊥, b) is the nuclear overlap function and Ncoll ≡
∫
d2x⊥ TAA(x⊥, b) is the number

of binary nucleon-nucleon collisions in the region. We set a central temperature T0 = 522 MeV
and initial formation time τ0 = 0.3 fm, as is done in [12].

3. Results
3.1. Binding Energies
Figure 3a gives the real part of the binding energy of Υ(1S) from the pQCD potential, and
strongly coupled potential, as a function of temperature. Similarly, figure 3b gives the imaginary
part of the binding energies for all cases mentioned above. The binding energy results for weakly
coupled bottomonium from [15] are labeled “pQCD (KRS)” and are included for comparison.

For the AdS/CFT results, we show the binding energy, both for the case where the coupling
constant is λ = 10 (labeled as αs = 0.27) and where λ = 5.5, in an attempt to at least partially
map out some of the systematic theoretical uncertainties associated with the use of the AdS/CFT
correspondence – this is discussed in section 3.2.

Both the binding energy results presented for the pQCD potential and the AdS/CFT potential
taking λ = 10 were independently confirmed using a complex variational method, further
explained in [14].

The binding energy found from our adapted methodology for the pQCD potential differs
quantitatively from that presented in [15], which was used in Krouppa et al. [12] to calculate
suppression. In the case of Υ(1S), this difference does not change the qualitative behavior of the
quarkonia, since both results suggest that the quarkonia remain bound up to at least T = 3Tc.
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Figure 3. The (a) negative real part of Ebind and (b) negative imaginary part of Ebind for
Υ(1S). The blue, green, and black curves give the results for weakly coupled and strongly
coupled (λ = 10 and λ = 5.5) Υ(1S), respectively. The dashed white curves are from the
independent evaluation using a complex variational method. The results from KRS [15], which
should be identical to the blue curves, are given as solid red for comparison.

However, we see in the results that follow that the small quantitative differences in the derived
binding energies lead to a significant quantitative difference in the predicted suppression.

The imaginary part of the binding energies from AdS/CFT are notably larger than those of
weakly coupled quarkonia, and rise more steeply. This result is not surprising as the AdS/CFT
potential has a divergent imaginary part, compared to the saturation of the imaginary part of
the pQCD potential.

Unlike in the case of the weakly coupled quarkonia where the Υ(1S) remains bound for
the temperature range considered, the strongly coupled Υ(1S) dissociates at ∼1.9Tc. The
comparatively larger imaginary part of the binding energy up to the temperature at which
the bottomonium dissociates implies a much larger thermal width at higher T , and hence a
larger suppression.

3.2. Suppression
Figure 4a gives the nuclear modification factor RAA for each of the sets of binding energies
shown in figure 3a and 3b as a function of the number of participating nucleons Npart. To this
end, the RAA(pT , b) from Eq. (9) is averaged over the transverse momentum range 0 ≤ pT ≤ 40
with a weighting of E−4 [12].

Figure 4b shows RAA(pT ), where all centrality classes are included, weighed by the number of
binary nucleon-nucleon collisions Ncoll. Suppression results for mid-rapidity (|y| < 2.4) Pb+Pb
collisions at

√
sNN = 2.76 TeV from the CMS Collaboration [17] are included in figure 4a and

4b for comparison.
We show in figures 4a and 4b two predictions for the suppression of strongly coupled

bottomonia. Since we used a potential derived in AdS-space dual to maximally supersymmetric
Yang-Mills theory, there is no single obvious map between the parameters of QCD and of
N = 4 SYM. For the αs = 0.27 curve, we took λSYM = 10 and TSYM = TQCD, where
λSYM = 10 =

√
4παsNc (and thus αs = 0.27 for Nc = 3) is approximately the value of the QCD

running coupling constant evaluated at the first Matsubara frequency of the plasma. For the
λ = 5.5 curve, the coupling constant was set by a comparison to the qq̄ potential from lattice
and TSYM = TQCD/3

−1/4 is a result of assuming the entropies of the QCD and SYM plasmas
are the same [18].
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Figure 4. (a) Nuclear modification factor RAA as a function of the number of participating
nucleons Npart for 0 ≤ pT ≤ 40. (b) Nuclear modification factor RAA as a function of transverse
momentum pT for combined centrality classes. In both subfigures, the thick solid blue line gives
our results for weakly coupled Υ(1S), and the dashed-dotted red line that calculated for the
binding energy from KRS [15] using our suppression model. The RAA presented in KRS [12] as
calculated using their suppression model is given in dashed purple. The solid green and dotted
black lines give the results for strongly coupled Υ(1S) with coupling constants αs = 0.27 (and
TSYM = TQCD) and λ = 5.5 (and TSYM = TQCD/3

1/4), respectively. Data from CMS [17] is
included in orange.

We show in figures 4a and 4b three predictions for weakly coupled bottomonia: 1) the
suppression using the binding energies we compute from the potential in [15] run through our
medium background, 2) the suppression using the binding energies computed in [15] run through
our medium background, and 3) the suppression quoted in [12] in which they run the binding
energies computed in [15] through their background.

4. Discussion and Outlook
We computed for the first time the suppression of bottomonia in an isotropic strongly coupled
QGP and compared the results to those from a weakly coupled QGP and to data from the CMS
Collaboration [17].

The non-relativistic, time dependent, radially symmetric Schrödinger Equation was solved
numerically in order to find the ground state wave functions for two potential models: one from
pQCD and one from AdS/CFT. The numerical evaluation of the imaginary time Schrödinger
Equation was performed by evolving forward in imaginary time until all higher order wave
functions were sufficiently suppressed. The potential used for weakly coupled quarkonia was
taken from [15], in which the potential came from leading-order pQCD with various corrections.
The strongly coupled quarkonia potential was taken from [6], who obtained their potential from
AdS/CFT.

The ground state wave functions obtained were then used to find the (complex) ground state
energies for Υ(1S). These ground state energies were then independently confirmed using a
complex variational technique [13]. Our binding energies for the weakly coupled potential in
[15] differed somewhat from those found in [15], likely due to extending the physical region under
consideration and from a possibly more careful treatment of the potential.

Our first results for Υ(1S) strongly coupled to a strongly coupled plasma show binding
energies with much larger imaginary parts than those found from the pQCD potential, as well
as real parts that become positive within the Tc to 3Tc range considered. Thus, for the potential



models considered here, a strongly coupled Υ(1S) interacting with a strongly coupled plasma
melts at a lower temperature than a weakly coupled Υ(1S) interacting with a weakly coupled
plasma. The Υ(1S) hence appears more strongly bound at weak coupling than at strong coupling,
which is surprising.

Since the weak coupling bottomonia become more strongly bound as the coupling is increased
and the strong coupling bottomonia become less strongly bound as the coupling decreases, that
the weak coupling bottomonia is more strongly bound at weak coupling than at strong coupling
suggests some non-monotonic behavior of the binding energies at the threshold between the
weak and strong coupling regimes. This non-monotonic behavior possibly stems from deriving
the potential at weak coupling in QCD whereas the strong coupling potential was derived in the
slightly different theory, N = 4 SYM; it would be interesting to compare binding energies from
the quarkonium potential at weak and strong coupling consistently within N = 4 SYM.

We then input the complex ground state binding energies we found using the imaginary time
techniques into an implementation of the suppression model described in [12] to determine the
Υ(1S) nuclear modification factor RAA as a function of the number of participating nucleons,
Npart, and of transverse momentum, pT , respectively. The difference in binding energies for
the two coupling scenarios is echoed in the RAA results: from the larger imaginary parts of
the strongly coupled binding energies, we see a significantly larger suppression for strongly
coupled Υ(1S) than for weakly coupled Υ(1S). Quantitatively, our full model—comprised of the
potential, the resulting quarkonia binding energies, and the translation to RAA—significantly
overpredicts the suppression of strongly coupled bottomonia compared to data. At the same
time, our predictions for weakly coupled bottomonia are consistent with data.

We note that our model for the medium is significantly less sophisticated compared to that
used in [12]: our background is an optical Glauber model as opposed to the 3+1D viscous
anisotropic hydrodynamics in that work. Our medium incorporates only Bjorken expansion,
whereas the background in [12] includes transverse expansion and entropy production. Therefore
the plasma in [12] cools faster than ours, leading to our model showing more dissociation for
the same binding energies. The extent of the sensitivity of RAA to the background used is
surprisingly large. With the only difference being the background geometry used, we ran the
binding energies from [15] through our suppression model and found an RAA a factor of two
smaller than that shown in [12].

In contrast to the favorable comparison between the pQCD-based results of [12] and the CMS
data [17], if we assume our weak coupling binding energies are more accurate than those of [15],
then computing RAA with the more sophisticated background from [12] would likely yield a
significant underprediction of the suppression of bottomonia.

At strong coupling, with a potential derived from AdS/CFT as described in [6], it seems
unlikely that the use of a more sophisticated background would reduce the suppression of
bottomonia enough that the predicted RAA would be consistent with data; however, the
differences from using a more sophisticated background, suppression model, and velocity
dependent potential may ultimately be sufficient for future strongly coupled quarkonia
predictions to be consistent with current data.

We note that our suppression calculations do not consider feed-down from higher excited
states Υ(nS), n > 1 for either the pQCD or AdS/CFT potentials. Considering feed-down,
however, would only serve to suppress the RAA further. Hence, our qualitative conclusions about
strongly-coupled quarkonia would remain unchanged should higher excited states be included.

We leave the implementation of more advanced calculations of quarkonia suppression—
including better modeling of the medium background, more accurate initial quarkonia
production, a more realistic dissociation model, and the use of velocity dependent potentials—
and a more thorough investigation of systematic theoretical uncertainties in quarkonia RAA for
future work.
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