Composite Models on a safe road to the Planck scale
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Abstract. We present the first serious attempt to define a model of composite pseudo-Nambu-
Goldstone Higgs with partial compositeness for all standard fermions that is valid up to the
Planck scale. The main ingredient is the presence of a large multiplicity of fermions in the
microscopic gauge-fermion description, which allows us to use large-INy techniques to show the
presence of an interactive UV fixed point for the gauge couplings (UV safety). We also present
results for the Dark Matter relic density and direct detection in the example model that is
UV-completed.

1. Introduction

The possibility that the electroweak symmetry breaking in the Standard Model (SM) is
dynamically generated by a confining and condensing strong interaction is still a valid alternative
to the Higgs mechanism in the SM. The latter is described in terms of an elementary scalar field,
with all the drawbacks associated to it (hierarchy, non-explanation of the negative mass squared,
etc.). In dynamical models, the scalar sector is replaced by a new strong sector: this idea is
in fact as old as the SM itself [1, 2]. In the original proposal, heavily based on Quantum
Chromodynamics (QCD), no light scalar arose in the spectrum, thus this possibility is ruled
out by the recent discovery of a 125 GeV Higgs-like boson. On the other hand, a light Higgs
boson can still be present arising as a pseudo-Nambu-Goldstone boson (pNGB) of a broad global
symmetry breaking pattern [3]. This mechanism, first proposed in the early 80’s, has received
a revival with the discovery of the holographic principle [4] that links a strongly interacting
conformal field theory to extra dimensions. Thus, the Higgs arises as a gauge field in the
holographic picture [5], in analogy to models of Gauge-Higgs Unification [6].

Following the holographic approach, most of the recent work has been focusing on effective
field theory approaches [7, 8], where little attention is given to the microscopic origin of the
confining dynamics. The UV completion of the model is thus assumed to be either a conformal
theory of unknown origin, or extra dimensions. An alternative, inspired by QCD, is to describe
an underlying microscopic model in terms of gauge and fermion degrees of freedom. By doing
so, one first realises that non-minimal cosets in terms of number of pNGBs are the norm.
For instance, the minimal allowed coset would be SU(4)/Sp(4) [9], which contains 5 pNGBs
organised as a Higgs doublet (4 degrees of freedom) plus a gauge singlet. All the allowed cosets
fall in 3 classes: SU(N)/Sp(N), with N even, if the fermions are in a pseudo-real irreducible



representation (irrep) of the confining gauge force, SU(N)/SO(N) if they are in a real irrep,
and finally SU(N) x SU(N)/SU(N) if they are in a complex irrep. This observation strongly
limits the possible cosets to study.

Another ingredient that came into play, and is important in model building, is the concept
of fermion partial compositeness [10]. In this paradigm, the SM fermions acquire their mass
by coupling linearly to some fermionic operators in the composite sector. This needs to be
compared to the older idea to couple them in bi-linear operators, and it was introduced to give
a generic solution to the problem of potentially dangerous flavour changing neutral currents. In
the holographic approach partial compositeness materialises in the fact that the SM fermions are
the lightest states of a bulk propagating fermion, thus their localisation in the extra dimension
determines the degree of compositeness [11, 12]. In underlying gauge-fermion theories, this
mechanism requires the presence of four-fermion couplings between one SM fermion and fermions
in the strong sector, which have the proper quantum numbers. This calls for the issue of assigning
QCD quantum numbers to the strong sector in order to allow couplings to the quarks.

In these proceedings we will focus on models that feature an underlying gauge-fermion
description, as described above. In particular, we will focus on two aspects: the possibility to
UV complete such models in order to give them a microscopic description valid up to the Planck
scale, and the possibility to feature a Dark Matter candidate among the additional pNGBs. As
we will see, both features will heavily rely on the underlying gauge-fermion description.

About the first point, attempts to build “UV completions” were put forward in Refs [13, 14,
15]: however, they are not genuine UV completions but simple underlying descriptions. The
main reason is that no attempt is given to explaining the origin of the couplings responsible for
top partial compositeness, thus the presence of four-fermion interactions imposes a cut-off to the
theory that is very close to the one of the effective description in terms of pNGBs. Nevertheless,
such descriptions have the benefit of lattice studies that can shed some light on the low-energy
properties of the models [16, 17, 18, 19]. One interesting idea emerged in Ref. [13]: top partial
compositeness can be accommodated by adding a second species of fermions, which transform
under a different irrep than those condensing in the Higgs sector. In this way, QCD interactions
are sequestered to the new sector and do not interfere with the electroweak symmetry breaking. !
Here we will go beyond this approach and try to genuinely define the theory above the validity of
the effective pNGB description: our approach will be based on large Ny resummation techniques,
see Ref. [21, 22, 23]. In fact, extending partial compositeness to all fermions of the SM necessarily
implies the presence of a large number of fermions in the second sector. This naturally drives
the theory towards a UV interacting fixed point, which renders the model valid up to arbitrary
scales.

The second point is the presence of a Dark Matter candidate. As already mentioned,
underlying gauge-fermion descriptions naturally predict the presence of non-minimal cosets,
which include additional pNGBs. In the minimal model, SU(4)/Sp(4), the additional singlet
has been the first Dark Matter candidate of this kind [24], however it decays via topological
anomalies. The most minimal model that features a Dark matter candidate is the minimal coset
with complex irreps, based on SU(4) x SU(4)/SU(4) [25]. The properties of the Dark matter
candidate in the case of bilinear top mass terms have been studied in Ref. [26]. Other examples
include SU(6)/Sp(6) [27] and SU(6)/SO(6) [28]. For completeness, works considering cosets
that do not have a simple underlying gauge-fermion description have also been considered in
Refs [29, 30, 31, 32].

! The only exception is a QCD-like model in Ref. [20].



Table 1. Minimal cosets with a pNGB Higgs doublet arising from an underlying gauge-fermion
theory. The fourth column shows the SU(2);, irrep, with the hypercharge as subscript. The
last three columns show some properties of the explicit models, with the nomenclature M1-M12
from Ref. [33], and MV being the model from Ref. [20].
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2. Running safely to the Planck scale

As already mentioned, our analysis is based on the low energy models listed in Ref. [13] (see
also Ref. [33]). These models were designed to give underlying fermion-gauge descriptions to the
interactions that give rise to the composite pNGB Higgs and top partial compositeness. The
QCD interactions are sequestered to a second sector of underlying fermions, y, that transform
under a different irrep under the confining Hypercolour (HC) than the underlying fermions,
1, generating the Higgs. A complete, but brief, list of models is presented in table 1. We also
included the model of Ref. [20] where 1) and  transform under the same irrep. The top partners,
i.e. the operators that couple to the top fields, arise as bound states of the form ¥y or ¥xx,
depending on the specific model.

One limitation of these models is the fact that they can accommodate only for the generation
of the top mass. The reason is that many more underlying fermions need to be added in
order to include operators that can couple to the bottom, and also to leptons and the other
two generations. Thus, the model will feature too many fermionic degrees of freedom and
asymptotic freedom is lost. In other words, the theory will not confine at low energies. In our
work in Ref. [34] we turned this drawback into a benefit: in fact, adding a fermion x for each
SM fermion (i.e., allowing partial compositeness for all SM fermions) increases dramatically the
fermionic degrees of freedom to the point that we can employ large Ny techniques to resum their
effect on the running of the gauge couplings. It has been observed in the literature that the
resummed beta function allows for a zero in the UV, thus there is a strong hint of the presence of
a UV interacting fixed point [35]. In turn this implies that our models also feature an interacting
UV fixed point, thus they can be trusted up to arbitrarily high scales.

While this picture sounds simple, it is not that easy to realise it in practice. We will present
here an explicit example with model M10, motivated by the fact that it has a pNGB Dark
Matter candidate. The model is based on the HC group SO(10)pc, and the underlying fermions
charged under SU(10)pc are listed in table 2. The underlying fermions that characterise M10
(i.e., the low energy part of it) are the ones with ~ 0 mass. They will make sure that the theory
confines and generates a pNGB effective theory below the scale Agc =~ 4w f, where f is the
decay constant of the composite Higgs. As a reference, we can keep in mind the following scales:
f =~ 1 TeV (in order to escape bounds from electroweak precision tests) and Agc ~ 10 TeV.

At the scale Ajc, we introduce two more x’s, with the quantum numbers that allow for the
generation of partial compositeness for the bottom quark and tau lepton (thus completing the
third generation). Their presence pushes the theory inside an IR conformal window [36, 37, 38],
preferably at strong coupling. The role of this walking region [39] is to generate a large enough



Table 2. UV-completed model M10 - all fermions are Dirac spinors.
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Figure 1. Plot of the renormalisation group running of the gauge couplings, «;, above the
electroweak scale. The continuous lines correspond to one-loop running, while the dashed lines
show the large- Ny resummation above A = 108® GeV. The upper panel contains the running
of ajp at strong coupling. Note that g also runs towards the UV fixed point ae = 0.86 (not
shown in the plot).

split between the scale where the partial compositeness couplings are generated and the scale of
compositeness. At a much higher scale, A, we introduced two more copies of the x’s, in order
to generate partial compositeness for all generations. Now, the number of fermions is such that
large- Ny resummation can be employed for all gauge couplings. The running, without large- Ny,
is shown in figure 1 by the solid lines. The green one corresponds to the confining SO(10)yc,
with the strong coupling walking represented as a sketch because a perturbative calculation in
that regime is clearly not trustworthy. Lattice studies will therefore be necessary to study this
region and the validity and duration of the walking regime [16, 17, 18, 19]. It is clear that all the
gauge couplings start growing towards the UV once the third-generation partial compositeness
is introduced. This growth will be tamed by large-N; resummation.



2.1. Large-Ny results
Contrary to calculations already present in the literature [40, 41, 42, 43], where N refers to the
multiplicity of a single fermion type, in our case we have fermions that have different quantum
numbers under the 4 gauge groups of the model. Thus, we need to define a different effective
Ny for each group and resum them all at the same order.

For each gauge group, therefore, we define a normalised coupling [35] that takes into account
the multiplicity of fermions f charged under it:

(074 Q4
K;=N,T,— == § ngT(ry) ; (1)
™ T T

with ¢ = 1,2,3,10 labelling the 4 gauge groups. We fix the overall normalisation with the
fundamental irreps, i.e. T1 = Tip = 1 and Ty = T3 = 1/2. Moreover, for U(1) it suffices to
replace in the formula 7'(r¢) — Y;?. The multiplicities IN;, that vary with each group, are all
considered formally to be of order “N;”, thus we can resum them at the same time and at the
same order. For the UV-complete model M10, we find the following values:

N1 =93, N;=22, N3=66, Njp=25. (2)
The resummed evolution equations, keeping all terms in the expansion, in general read
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with the first-order terms equal to
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The coefficients ¢; ; can be computed numerically in terms of the quantum numbers of the
fermions. For M10, this yields
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The functions H; and F) are generated by the resummation of fermion bubbles on the gauge
propagators of the two-loop diagrams, and their explicit expression can be found in Ref. [41].
They have a special property: they feature a pole above which the resummation does not
converge, and the pole drives the function towards negative values. This implies that near the
pole the beta function at leading order will vanish. The poles, therefore, act as an effective
barrier that does not allow the gauge couplings to grow beyond such a point in the UV. This



property is at the origin of the postulated UV fixed point. For the two functions relevant here,
the poles stand at:

15
H{(K*) = —o0 for K* =3, Fi(K*) - —oo for K*:?. (7)

These barriers will thus drive our model to a complete UV fixed point only if the value of the
couplings at the threshold Ag are below the pole: the evolution towards the UV will stop at that
value where the beta function vanishes and the theory approaches a fixed point. Numerically,
in M10 this implies:

Oél(Apl) < 0.25, OéQ(AF]) < 0.86,
Ozg(AFl) < 0.28, alg(Apl) < 0.38. (8)

Satisfying the above constraints provides an upper bound on Ap; as all the gauge couplings
(except «p) increase towards the UV above Apc. We should also remind the reader that
A cannot be too low, otherwise we risk generating dangerous flavour-changing neutral currents
when the partial compositeness four-fermion interactions are generated. Thus, we will generically
require A > 10° TeV for generic flavour violating effects.

We show in figure 1 the one-loop running of the 4 gauge couplings above the electroweak
scale, assuming Apc = 10 TeV for the model in table 2. In this case, the coupling that first
crosses the upper limit in Eq. (8) is the QCD one a3, shown in red. The thin horizontal line,
representing the bound, is crossed at 10? GeV, which is therefore the upper limit on the value of
Ap1. We thus add the y’s for the light generations at Ap = 103° GeV and plot in dashed lines
the running after the large- Ny resummation. We can see that all the couplings run to the UV
fixed point (for SU(2) it is not shown in the plot because of the larger value). The behaviour
of ag after U(1) saturates the asymptotic value is a numerical artefact, nevertheless it shows
the impact of the U(1) running on the other gauge couplings as a large Fj(aq) will affect all
the S-functions in Eq. (5). This example shows that a completely UV-safe composite Higgs and
Dark Matter model with partial compositeness is indeed feasible.

3. Dark Matter phenomenology

The low energy description of this model contains electroweakly charged pNGBs generated by
the condensation of the ¢ underlying fermions. Out of the cosets shown in table 1, only the
SU(4)%/SU(4) one enjoys a potentially stable pNGB Dark Matter candidate. The parity, which
is a combination of charge conjugation and an SU(4) rotation, has been studied in Ref. [25].
While the phenomenology of the model with bi-linear mass operators has been studied in
Ref. [26], here we will focus on the case where the top mass is generated via partial compositeness.
We will thus focus on two scenarios: one based on a holographic model and one based on the
UV-complete model discussed in the previous section.

In both cases, the pNGBs that are odd under the dark parity transform as a second Higgs
doublet, a real triplet, a charged and a neutral singlet. In general, the lightest state will be a
mixture of the three neutral components. We will here discuss the general strategy we employed
in the calculation, and show the explicit results in the following sections.

For the top partial compositeness, after appropriately choosing the representation of the
fermionic operator, we write down the linear mixing of the right-handed top and of the left-
handed doublet. This leaves two free parameters, i.e. the two pre-Yukawas, which are partly
fixed by the value of the top mass. At one loop level, this mixing will also generate a potential
for the pNGBSs, including the Higgs. Here we use the standard technique of computing the loops
and imposing maximal symmetry [44] to guarantee the finiteness of the contribution. Note
that there is an alternative way, namely computing a basis of operators generated by the same



pre-Yukawa, treated as spurions [45]. This second technique would be more appropriate if the
top partners, i.e. the massive resonances associated with the fermionic operators, were heavy
and/or strongly coupled. In fact, the loop calculation can only be trusted in a regime of light
and weakly coupled composite fermions [46], which is not always the case in strongly interacting
dynamics. It should also be noticed that the two techniques do not necessarily lead to the same
results, as it was shown in a specific case in Ref. [47].

In this work, we also considered the contribution of the gauge loops and of bare masses for
the technifermions, see Ref. [25]. In particular, the masses play an important role in determining
the nature of the lightest stable pNGB. There are two possible masses that can be added: one
for the left-handed doublet 1, and one for the right-handed doublet ¥r (see table 2). These
two masses explicitly break SU(4)? — SU(2)r, x SU(2)g (if my, = £my,,, then a global SU(4)
is preserved). We can define, therefore, an asymmetry between the two as

5= My, — Myp ) (9)
My, + My

We observe that, in general, the lightest neutral state is dominantly the SU(2), real triplet for
0 < 0, and the singlet for § > 0, while an equal mixture occurs for § ~ 0. Interestingly this
pattern does not depend crucially on the top mass mechanism.

To partly fix the free parameters of the model, we first impose that the electroweak scale is
correctly generated at the minimum of the potential and then impose the correct value of the
Higgs and top masses. This fixes only 3 of the free parameters of the model. We then scan over
the remaining ones to check for points that satisfy the correct relic abundance.

3.1. Results for a holographic model

The first case we analyse corresponds to a model inspired by holography. In fact, in order to
preserve the dark parity, we need to choose an appropriate representation for the top partners
under the global SU(4) x SU(4) symmetry. The simplest choice is a representation that is real
under charge conjugation, i.e. (4,4). With this choice, the dark parity maps this representation
on itself as it acts as a transpose on the SU(4)? matrix. As we will see in the next section, this
choice is not possible in the UV complete models studied in the previous section.

—10 —40 10
—— LUX-2016 —— LUX-2016
41| = PandaX-ll 0=05 —41 PandaX-Il 6=—-0.5 '11.3
—— XENON-1T —— XENON-1T
—42| === |Z-Project 42| === LZ-Project 0.0
i: —43 :/]: 43
o L 0.5~
= = ~
S S <=
= -1 =
~ = mc
%) 2 -
L S 0
cﬁ ‘ u% 15—
R <

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 —30

AJDM GeV ]\"[DM [GeV

Figure 2. Scan of the re-weighted Spin-Independent cross section compared to current and
future Direct Detection constraints [48, 49, 50] for § = 0.5 (left) and 6 = —0.5 (right). The
colour encodes the value of the relic density, where the green line indicates the points saturating
the Planck value. [Plots from the first version of Ref. [34]]



The results of the scan are shown in figure 2, where we show the Spin-Independent cross
section re-weighted to the correct value of the relic density versus Direct Detection exclusions.
The colour of the points encodes the value of the relic density, with the green lines marking points
that saturate the Planck bound. Points that tend to the blue hues are under-dense, thus not
excluded. We see that in the case of the dominantly singlet (§ > 0), the relic density is saturated
by a relatively low mass, with Mpys ~ 250 GeV. This is due to the typically low annihilation
cross section, which is dominated by nn — vy, ZZ, WTW ™ channels. Direct Detection just
touches the allowed region, which will however be completely excluded by the next generation
experiments. Note that Direct Detection is only due to a trilinear coupling of the scalar Dark
Matter candidate to the Higgs.

For § < 0, the Dark Matter candidate is dominantly a triplet. While a low mass region
starting at the same value is present, with annihilation again dominantly in W*W ~, for points
where the nn — tt channel is dominant larger masses up to 1.8 TeV are needed. However, Direct
Detection (XENONIT) already excludes masses up to 1.5 TeV, thus only the high mass end is
left available.

Note that the value of f is not fixed here, as it is correlated to the value of the Dark Matter
mass. In the scan we have f = v/sin 6, with 6 varying within the range [0.003, 0.3]. The preferred
values of the masses fall in the range that is typically preferred by electroweak precision bounds
too.
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Figure 3. Same as figure 2, but for the UV complete model M10. [Plots from the revised
version of Ref. [34]]

3.2. Results for the safe model

We now turn our attention to the UV-complete model M10 (in fact these results also apply to
M11). In this case, the representation of the top partners cannot be chosen to be (4,4) due to
the quantum numbers of the underlying fermions. In fact, to make a baryon ¥y, we need to
combine 16 x 16 x 10, while the vacuum is characterised by 16 x 16. It turns out, therefore,
that the allowed representations are (4,4) & (4,4) or (6,1) @ (1,6). These representations are
clearly not mapped onto themselves by the dark parity if taken individually, thus one needs to
make sure that a symmetric coupling to the charge-conjugate representations are also present. 2
While this seems contrived, it is actually a natural choice in terms of the underlying model.

2 The dark parity would map (4,4) « (4,4) and (6,1) < (1,6).



The easiest way to see this is to write the four-fermion couplings in terms of Weyl spinors:
we define by a super-script [ and r the left- and right-handed components of the Dirac spinors
from table 2. In the case of the (6,1) & (1,6) representation, for instance, the four-fermion
interactions for the right-handed top t" would thus read

A odl rod,
oy TR WRYE) | (O WRYE)

= o . (10)

The dark parity would be preserved if y; = y2. Note that the only difference between the two
operators is the chirality of the ¢—spinors, thus a symmetric scenario can be easily achieved if
the operator is generated by a scalar mediator that couples to both chiralities of the spinors.

The results of the scan for the choice (4,4) @ (4,4) is shown in figure 3. Similar to the plot
in the previous section, we show points with different hues indicating the relic abundance, with
the one tending to blue being under-abundant. The points in dark green saturate the correct
value. Once again, we observe that for dominantly singlet Dark Matter candidate, i.e. § > 0, the
points have a light mass, close to Mpys =~ 250 GeV. However, contrary to the previous case, the
SI cross section can be much smaller in this case, thus evading current and future experiments.

For the dominantly triplet case, 4 < 0, a similar mass range as before is accessed, between
250 GeV and 2 TeV. However, we see that now the large mass points lie close to the exclusion
limit and will be probed by future Direct Detection experiments, while the low mass points allow
for very small and undetectable Spin Independent cross sections.

4. Conclusions and Outlook

Models where the electroweak symmetry breaking is dynamically generated and the Higgs
emerges as a composite pNGB are still a valid alternative to the elementary Higgs nature of the
SM. In these proceedings we have addressed the issue of UV completing this scenario, which is
currently dominantly studied at the effective model level. We presented the first serious attempt
to define a theory all the way up to the Planck scale.

Our main construction is based on the observation that, in order to generate masses via partial
compositeness to all the SM fermions, a microscopic fermion-gauge theory needs to contain a
large number of fermions charged under the SM gauge symmetries as well as the confining HC
interactions. This in turns allows us to use large-INy techniques. This resummation hints at
the presence of an interacting UV fixed point in the gauge running. As such, the theory can be
extrapolated up to arbitrarily high energies. A key constraint on the model building is the fact
that none of the gauge couplings should be larger than the fixed value once the large multiplicity
of fermions enters in the game. Thus, there is an upper limit on the value of the mass of such
fermions. We showed in an explicit example based on a confining SO(10)yc interaction that this
is indeed allowed. We showed that the new fermions can be added at a scale close to 107 GeV,
above which all gauge couplings run to a safe point. In this work we did not address the origin
of the four-fermion interactions responsible for the partial compositeness. However, we showed
that they can be easily generated via scalar interactions. As long as the scalar mediator are
added close to the highest scale in the model, i.e. the threshold for the many fermions, the
theory remains natural (i.e., no unjustified hierarchies are present). The next step in validating
this model would be to check that the Yukawa couplings between the scalar mediators and
the underlying fermions also run to a UV fixed point. This will be the scope of our future
explorations.

We have also addressed the phenomenology of the Dark Matter candidate in scenarios where
the dominant coupling is the top partial compositeness. We find two interesting regions: one
where the mass of the Dark Matter is &~ 250 GeV, and one where it can extend up to 2 TeV.
Interestingly, next generation Direct Detection experiments can probe most of the parameter



space of the model. However, in particular at low mass, there are regions of small Spin-
Independent cross section on nuclei. However, the LHC may have a chance to cover this region
of the parameter space. We leave this exploration for a future study.
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