### The neutron production facility at the Lawrence Berkeley National Laboratory

#### Darren L. Bleuel

Lawrence Livermore National Laboratory

Fast Neutrons for the Next Decade and Beyond iThemba LABS, South Africa February 5, 2019





This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC































## A neutron production facility has been developed at LBNL's 88-inch cyclotron over the past few decades

#### Sources:

- Deuteron breakup (white)
- <sup>7</sup>Li(p,n) (quasi-monoenergetic)

#### **Applications:**

- Neutron energy spectral measurements
- Scintillator characterization
  - Timing
  - Light yield
  - Efficiency
- Equipment damage
- Isotope production cross sections

#### **Developing Capabilities (the future!):**

- FLUFFY Short-lifetime fission product yields
- GENESIS Inelastic scattering



The 88-inch cyclotron



























### To mitigate frame overlap in energy spectral measurements, we developed a "double time-of-flight" technique





Harrig et. al, NIM A 877 (2018) 359.



### Using this "dToF" method, we were able to improve the "16 MeV d-on-Be" deuteron breakup measurement





# A comparison of (some) neutron sources around the world (a.k.a., the slide that gets me hate mail)







## Using the same "dToF" method, we have characterized scintillator light yield lower in energy than ever before





Lawrence Livermore National Laboratory

### The neutron flux close to the breakup source is high enough to damage equipment (both purposefully and not)

| Fundamental      Powered/controlled      Controlled    | Equipment            | Fluence<br>(n/cm <sup>2</sup> )<br>[to failure] | Facility-<br>equivalent<br>time | P/F          |
|--------------------------------------------------------|----------------------|-------------------------------------------------|---------------------------------|--------------|
|                                                        | Pow. Supply          | 2x10 <sup>10</sup>                              | 1 week                          | Х            |
|                                                        | Magnet               | 9x10 <sup>10</sup>                              | 1.8 week                        | $\checkmark$ |
|                                                        | Photodiode           | 3x10 <sup>11</sup>                              | 0.6 week                        | Х            |
|                                                        | Hall Sensor          | 1x10 <sup>13</sup>                              | 23 weeks                        | $\checkmark$ |
| O-rings<br>photodiode<br>727<br>974B<br>974B<br>magnet | O-rings              | 5x10 <sup>13</sup>                              |                                 | $\checkmark$ |
|                                                        | 974B Gauge           | 2x10 <sup>11</sup>                              | 0.8 week                        | Х            |
|                                                        | 722B Gauge           | 2x10 <sup>11</sup>                              | 0.6 week                        | Х            |
|                                                        | T-couples<br>(E,J,K) | 5x10 <sup>12</sup>                              |                                 | $\checkmark$ |
|                                                        |                      |                                                 |                                 |              |





## Lee Bernstein's group has begun a program to measure cross sections important to isotope production





## As part of this effort, in cooperation with J. Engle, we have added thin lithium targets (patterned after iThemba's)



#### Lawrence Livermore National Laboratory

#### Slide courtesy Andrew Voyles



## We were part of a successful NDIWG grant to assemble FLUFFY to measure short-lived fission product yields

- FLUFFY: Fast-Loading User Facility for Fission Yields
- High-intensity, short-burst neutron irradiations of <sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu targets
- Rabbit system to Clover HPGe detectors in neighboring shielded room within 100 milliseconds
- Repeat
- Goal is to measure independent fission product yields with t<sub>1/2</sub><1s</li>
- In collaboration with TUNL, where longer-lifetime yields are measured as a function of neutron energy



Time (min)



### Inelastic scattering has been referred to as "the trash dump of neutron cross sections."



1E5 1E6

### We also received a Nuclear Data grant to assemble GENESIS, a new capability to measure inelastic cross sections

- GENESIS: Gamma-Energy Neutron-Energy
  Spectrometer for Inelastic Scattering
- Use coincident neutron and gamma-ray detection with time-of-flight to measure d<sup>3</sup>σ<sub>n,n'γ</sub>/dE<sub>n</sub>dE<sub>n</sub>'dΩ (inelastic cross sections as a function of incoming energy, outgoing neutron energy and angle)
- 12 EJ309 neutron detectors
- 2-3 Clover HPGe
- 1 LEPS
- 1 Gretina module
- Neutron test run: March 2019
- First Benchmark (<sup>56</sup>Fe) run: June 2019
- NDIWG grant Goal: <sup>238</sup>U(n,n')
- LLNL-funded stretch goal: low-Z





Thanks!

UC Fee NPI@NIF grant launches UCB/LLNL collaboration: 2012

Branching out: 2014

This vast variety of neutron capabilities are the result of many dozens of students' and postdocs' efforts through a very successful collaboration between LBNL, LLNL, and UCB over the past seven years.

Realizing we need to take group photos more often: 2018

